12,300 research outputs found

    Distributive Power Control Algorithm for Multicarrier Interference Network over Time-Varying Fading Channels - Tracking Performance Analysis and Optimization

    Full text link
    Distributed power control over interference limited network has received an increasing intensity of interest over the past few years. Distributed solutions (like the iterative water-filling, gradient projection, etc.) have been intensively investigated under \emph{quasi-static} channels. However, as such distributed solutions involve iterative updating and explicit message passing, it is unrealistic to assume that the wireless channel remains unchanged during the iterations. Unfortunately, the behavior of those distributed solutions under \emph{time-varying} channels is in general unknown. In this paper, we shall investigate the distributed scaled gradient projection algorithm (DSGPA) in a KK pairs multicarrier interference network under a finite-state Markov channel (FSMC) model. We shall analyze the \emph{convergence property} as well as \emph{tracking performance} of the proposed DSGPA. Our analysis shows that the proposed DSGPA converges to a limit region rather than a single point under the FSMC model. We also show that the order of growth of the tracking errors is given by \mathcal{O}\(1 \big/ \bar{N}\), where Nˉ\bar{N} is the \emph{average sojourn time} of the FSMC. Based on the analysis, we shall derive the \emph{tracking error optimal scaling matrices} via Markov decision process modeling. We shall show that the tracking error optimal scaling matrices can be implemented distributively at each transmitter. The numerical results show the superior performance of the proposed DSGPA over three baseline schemes, such as the gradient projection algorithm with a constant stepsize.Comment: To Appear on the IEEE Transaction on Signal Processin

    Gaussian Process Model Predictive Control of An Unmanned Quadrotor

    Full text link
    The Model Predictive Control (MPC) trajectory tracking problem of an unmanned quadrotor with input and output constraints is addressed. In this article, the dynamic models of the quadrotor are obtained purely from operational data in the form of probabilistic Gaussian Process (GP) models. This is different from conventional models obtained through Newtonian analysis. A hierarchical control scheme is used to handle the trajectory tracking problem with the translational subsystem in the outer loop and the rotational subsystem in the inner loop. Constrained GP based MPC are formulated separately for both subsystems. The resulting MPC problems are typically nonlinear and non-convex. We derived 15 a GP based local dynamical model that allows these optimization problems to be relaxed to convex ones which can be efficiently solved with a simple active-set algorithm. The performance of the proposed approach is compared with an existing unconstrained Nonlinear Model Predictive Control (NMPC). Simulation results show that the two approaches exhibit similar trajectory tracking performance. However, our approach has the advantage of incorporating constraints on the control inputs. In addition, our approach only requires 20% of the computational time for NMPC.Comment: arXiv admin note: text overlap with arXiv:1612.0121

    Scalable Approach to Uncertainty Quantification and Robust Design of Interconnected Dynamical Systems

    Full text link
    Development of robust dynamical systems and networks such as autonomous aircraft systems capable of accomplishing complex missions faces challenges due to the dynamically evolving uncertainties coming from model uncertainties, necessity to operate in a hostile cluttered urban environment, and the distributed and dynamic nature of the communication and computation resources. Model-based robust design is difficult because of the complexity of the hybrid dynamic models including continuous vehicle dynamics, the discrete models of computations and communications, and the size of the problem. We will overview recent advances in methodology and tools to model, analyze, and design robust autonomous aerospace systems operating in uncertain environment, with stress on efficient uncertainty quantification and robust design using the case studies of the mission including model-based target tracking and search, and trajectory planning in uncertain urban environment. To show that the methodology is generally applicable to uncertain dynamical systems, we will also show examples of application of the new methods to efficient uncertainty quantification of energy usage in buildings, and stability assessment of interconnected power networks

    Second-Order Fault Tolerant Extended Kalman Filter for Discrete Time Nonlinear Systems

    Get PDF
    As missing sensor data may severely degrade the overall system performance and stability, reliable state estimation is of great importance in modern data-intensive control, computing, and power systems applications. Aiming at providing a more robust and resilient state estimation technique, this paper presents a novel second-order fault-tolerant extended Kalman filter estimation framework for discrete-time stochastic nonlinear systems under sensor failures, bounded observer-gain perturbation, extraneous noise, and external disturbances condition. The failure mechanism of multiple sensors is assumed to be independent of each other with various malfunction rates. The proposed approach is a locally unbiased, minimum estimation error covariance based nonlinear observer designed for dynamic state estimation under these conditions. It has been successfully applied to a benchmark target-trajectory tracking application. Computer simulation studies have demonstrated that the proposed second-order fault-tolerant extended Kalman filter provides more accurate estimation results, in comparison with traditional first- and second-order extended Kalman filter. Experimental results have demonstrated that the proposed second-order fault-tolerant extended Kalman filter can serve as a powerful alternative to the existing nonlinear estimation approaches

    On Variational Data Assimilation in Continuous Time

    Full text link
    Variational data assimilation in continuous time is revisited. The central techniques applied in this paper are in part adopted from the theory of optimal nonlinear control. Alternatively, the investigated approach can be considered as a continuous time generalisation of what is known as weakly constrained four dimensional variational assimilation (WC--4DVAR) in the geosciences. The technique allows to assimilate trajectories in the case of partial observations and in the presence of model error. Several mathematical aspects of the approach are studied. Computationally, it amounts to solving a two point boundary value problem. For imperfect models, the trade off between small dynamical error (i.e. the trajectory obeys the model dynamics) and small observational error (i.e. the trajectory closely follows the observations) is investigated. For (nearly) perfect models, this trade off turns out to be (nearly) trivial in some sense, yet allowing for some dynamical error is shown to have positive effects even in this situation. The presented formalism is dynamical in character; no assumptions need to be made about the presence (or absence) of dynamical or observational noise, let alone about their statistics.Comment: 28 Pages, 12 Figure

    Distributive Network Utility Maximization (NUM) over Time-Varying Fading Channels

    Full text link
    Distributed network utility maximization (NUM) has received an increasing intensity of interest over the past few years. Distributed solutions (e.g., the primal-dual gradient method) have been intensively investigated under fading channels. As such distributed solutions involve iterative updating and explicit message passing, it is unrealistic to assume that the wireless channel remains unchanged during the iterations. Unfortunately, the behavior of those distributed solutions under time-varying channels is in general unknown. In this paper, we shall investigate the convergence behavior and tracking errors of the iterative primal-dual scaled gradient algorithm (PDSGA) with dynamic scaling matrices (DSC) for solving distributive NUM problems under time-varying fading channels. We shall also study a specific application example, namely the multi-commodity flow control and multi-carrier power allocation problem in multi-hop ad hoc networks. Our analysis shows that the PDSGA converges to a limit region rather than a single point under the finite state Markov chain (FSMC) fading channels. We also show that the order of growth of the tracking errors is given by O(T/N), where T and N are the update interval and the average sojourn time of the FSMC, respectively. Based on this analysis, we derive a low complexity distributive adaptation algorithm for determining the adaptive scaling matrices, which can be implemented distributively at each transmitter. The numerical results show the superior performance of the proposed dynamic scaling matrix algorithm over several baseline schemes, such as the regular primal-dual gradient algorithm
    • …
    corecore