62,661 research outputs found

    On the Grunbaum Commutor Based Discrete Fractional Fourier Transform

    Get PDF
    The basis functions of the continuous fractional Fourier transform (FRFT) are linear chirp signals that are suitable for time-frequency analysis of signals with chirping time-frequency content. In the continuous--time case, analytical results linking the chirp rate of the signal to a specific angle where the FRET of the chirp signal is an impulse exist. Recent efforts towards developing a discrete and computable version of the fractional Fourier transform (DFRFT) have focussed on furnishing a orthogonal set of eigenvectors for the DFT that serve as discrete versions of the Gauss--Hermite functions in the hope of replicating this property. In the discrete case, however, no analytical results connecting the chirp rate of the signal to the angle at which we obtain an impulse exist. Defined via the fractional matrix power of the centered version of the DFT, computation of this transform has been constrained due to the need for computing an eigenvalue decomposition. Analysis of the centered version of the DFRFT obtained from Grunbaum\u27s tridiagonal commuter and the kernel associated with it reveals the presence of both amplitude and frequency modulation in contrast to just frequency modulation seen in the continuous case. Furthermore, the instantaneous frequency of the basis functions of the DFRFT are sigmoidal rather than linear. In this report, we define a centered version of the DFRFT based on the Grunbaum commutor and investigate its capabilities towards representing and concentrating chirp signals in a few transform coefficients. We then propose a fast algorithm using the FFT for efficient computation of the multiangle version of the CDFRFT (MA-CDFRFT) using symmetries in the computed eigenvectors to reduce the size of the eigenvalue problem. We further develop approximate empirical relations that will enable us to estimate the chirp rate of the multicomponent chirp signals from the peaks of the computed MA-CDFRFT. This MA-CDFRFT also lays the ground work for a novel chirp rate Vs. frequency signal representation that is more suitable for the time-frequency analysis of multicomponent chirp signals

    A Fourier transform method for nonparametric estimation of multivariate volatility

    Full text link
    We provide a nonparametric method for the computation of instantaneous multivariate volatility for continuous semi-martingales, which is based on Fourier analysis. The co-volatility is reconstructed as a stochastic function of time by establishing a connection between the Fourier transform of the prices process and the Fourier transform of the co-volatility process. A nonparametric estimator is derived given a discrete unevenly spaced and asynchronously sampled observations of the asset price processes. The asymptotic properties of the random estimator are studied: namely, consistency in probability uniformly in time and convergence in law to a mixture of Gaussian distributions.Comment: Published in at http://dx.doi.org/10.1214/08-AOS633 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Nonlinear model identification and spectral submanifolds for multi-degree-of-freedom mechanical vibrations

    Get PDF
    In a nonlinear oscillatory system, spectral submanifolds (SSMs) are the smoothest invariant manifolds tangent to linear modal subspaces of an equilibrium. Amplitude-frequency plots of the dynamics on SSMs provide the classic backbone curves sought in experimental nonlinear model identification. We develop here a methodology to compute analytically both the shape of SSMs and their corresponding backbone curves from a data-assimilating model fitted to experimental vibration signals. Using examples of both synthetic and real experimental data, we demonstrate that this approach reproduces backbone curves with high accuracy.Comment: 32 pages, 4 figure

    Computation of synthetic spectra from simulations of relativistic shocks

    Full text link
    Particle-in-cell (PIC) simulations of relativistic shocks are in principle capable of predicting the spectra of photons that are radiated incoherently by the accelerated particles. The most direct method evaluates the spectrum using the fields given by the Lienard-Wiechart potentials. However, for relativistic particles this procedure is computationally expensive. Here we present an alternative method, that uses the concept of the photon formation length. The algorithm is suitable for evaluating spectra both from particles moving in a specific realization of a turbulent electromagnetic field, or from trajectories given as a finite, discrete time series by a PIC simulation. The main advantage of the method is that it identifies the intrinsic spectral features, and filters out those that are artifacts of the limited time resolution and finite duration of input trajectories.Comment: Accepted for publication in the Astrophysical Journa

    On Dynamics of Integrate-and-Fire Neural Networks with Conductance Based Synapses

    Get PDF
    We present a mathematical analysis of a networks with Integrate-and-Fire neurons and adaptive conductances. Taking into account the realistic fact that the spike time is only known within some \textit{finite} precision, we propose a model where spikes are effective at times multiple of a characteristic time scale δ\delta, where δ\delta can be \textit{arbitrary} small (in particular, well beyond the numerical precision). We make a complete mathematical characterization of the model-dynamics and obtain the following results. The asymptotic dynamics is composed by finitely many stable periodic orbits, whose number and period can be arbitrary large and can diverge in a region of the synaptic weights space, traditionally called the "edge of chaos", a notion mathematically well defined in the present paper. Furthermore, except at the edge of chaos, there is a one-to-one correspondence between the membrane potential trajectories and the raster plot. This shows that the neural code is entirely "in the spikes" in this case. As a key tool, we introduce an order parameter, easy to compute numerically, and closely related to a natural notion of entropy, providing a relevant characterization of the computational capabilities of the network. This allows us to compare the computational capabilities of leaky and Integrate-and-Fire models and conductance based models. The present study considers networks with constant input, and without time-dependent plasticity, but the framework has been designed for both extensions.Comment: 36 pages, 9 figure

    Broadband passive targeted energy pumping from a linear dispersive rod to a lightweight essentially non-linear end attachment

    Get PDF
    We examine non-linear resonant interactions between a damped and forced dispersive linear finite rod and a lightweight essentially nonlinear end attachment. We show that these interactions may lead to passive, broadband and on-way targeted energy flow from the rod to the attachment, which acts, in essence, as non-linear energy sink (NES). The transient dynamics of this system subject to shock excitation is examined numerically using a finite element (FE) formulation. Parametric studies are performed to examine the regions in parameter space where optimal (maximal) efficiency of targeted energy pumping from the rod to the NES occurs. Signal processing of the transient time series is then performed, employing energy transfer and/or exchange measures, wavelet transforms, empirical mode decomposition and Hilbert transforms. By computing intrinsic mode functions (IMFs) of the transient responses of the NES and the edge of the rod, and examining resonance captures that occur between them, we are able to identify the non-linear resonance mechanisms that govern the (strong or weak) one-way energy transfers from the rod to the NES. The present study demonstrates the efficacy of using local lightweight non-linear attachments (NESs) as passive broadband energy absorbers of unwanted disturbances in continuous elastic structures, and investigates the dynamical mechanisms that govern the resonance interactions influencing this passive non-linear energy absorption
    corecore