8,829 research outputs found

    Traffic-Redundancy Aware Network Design

    Full text link
    We consider network design problems for information networks where routers can replicate data but cannot alter it. This functionality allows the network to eliminate data-redundancy in traffic, thereby saving on routing costs. We consider two problems within this framework and design approximation algorithms. The first problem we study is the traffic-redundancy aware network design (RAND) problem. We are given a weighted graph over a single server and many clients. The server owns a number of different data packets and each client desires a subset of the packets; the client demand sets form a laminar set system. Our goal is to connect every client to the source via a single path, such that the collective cost of the resulting network is minimized. Here the transportation cost over an edge is its weight times times the number of distinct packets that it carries. The second problem is a facility location problem that we call RAFL. Here the goal is to find an assignment from clients to facilities such that the total cost of routing packets from the facilities to clients (along unshared paths), plus the total cost of "producing" one copy of each desired packet at each facility is minimized. We present a constant factor approximation for the RAFL and an O(log P) approximation for RAND, where P is the total number of distinct packets. We remark that P is always at most the number of different demand sets desired or the number of clients, and is generally much smaller.Comment: 17 pages. To be published in the proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithm

    Distributed Hybrid Simulation of the Internet of Things and Smart Territories

    Full text link
    This paper deals with the use of hybrid simulation to build and compose heterogeneous simulation scenarios that can be proficiently exploited to model and represent the Internet of Things (IoT). Hybrid simulation is a methodology that combines multiple modalities of modeling/simulation. Complex scenarios are decomposed into simpler ones, each one being simulated through a specific simulation strategy. All these simulation building blocks are then synchronized and coordinated. This simulation methodology is an ideal one to represent IoT setups, which are usually very demanding, due to the heterogeneity of possible scenarios arising from the massive deployment of an enormous amount of sensors and devices. We present a use case concerned with the distributed simulation of smart territories, a novel view of decentralized geographical spaces that, thanks to the use of IoT, builds ICT services to manage resources in a way that is sustainable and not harmful to the environment. Three different simulation models are combined together, namely, an adaptive agent-based parallel and distributed simulator, an OMNeT++ based discrete event simulator and a script-language simulator based on MATLAB. Results from a performance analysis confirm the viability of using hybrid simulation to model complex IoT scenarios.Comment: arXiv admin note: substantial text overlap with arXiv:1605.0487

    Current-Mode Techniques for the Implementation of Continuous- and Discrete-Time Cellular Neural Networks

    Get PDF
    This paper presents a unified, comprehensive approach to the design of continuous-time (CT) and discrete-time (DT) cellular neural networks (CNN) using CMOS current-mode analog techniques. The net input signals are currents instead of voltages as presented in previous approaches, thus avoiding the need for current-to-voltage dedicated interfaces in image processing tasks with photosensor devices. Outputs may be either currents or voltages. Cell design relies on exploitation of current mirror properties for the efficient implementation of both linear and nonlinear analog operators. These cells are simpler and easier to design than those found in previously reported CT and DT-CNN devices. Basic design issues are covered, together with discussions on the influence of nonidealities and advanced circuit design issues as well as design for manufacturability considerations associated with statistical analysis. Three prototypes have been designed for l.6-pm n-well CMOS technologies. One is discrete-time and can be reconfigured via local logic for noise removal, feature extraction (borders and edges), shadow detection, hole filling, and connected component detection (CCD) on a rectangular grid with unity neighborhood radius. The other two prototypes are continuous-time and fixed template: one for CCD and other for noise removal. Experimental results are given illustrating performance of these prototypes

    Game-Theoretic Pricing and Selection with Fading Channels

    Full text link
    We consider pricing and selection with fading channels in a Stackelberg game framework. A channel server decides the channel prices and a client chooses which channel to use based on the remote estimation quality. We prove the existence of an optimal deterministic and Markovian policy for the client, and show that the optimal policies of both the server and the client have threshold structures when the time horizon is finite. Value iteration algorithm is applied to obtain the optimal solutions for both the server and client, and numerical simulations and examples are given to demonstrate the developed result.Comment: 6 pages, 4 figures, accepted by the 2017 Asian Control Conferenc

    Inter-domain router placement and traffic engineering

    Get PDF
    The Internet is organized as an interconnection of separate administrative domains called Autonomous Systems (AS). The Border Gateway Protocol (BGP) is the de facto standard for controlling the routing of traffic across different ASs. It supports scalable distribution of reachability and routing policy information among different ASs. In this paper, we study a network design problem which determines (1) the optimal placement of border router(s) within a domain and (2) the corresponding inter-and intra-domain traffic patterns within an AS. Practical constraints imposed by BGP and other standard shortest-path-based intra-domain routing protocols are considered. The problem is formulated as a variant of the uncapacitated network design problem (UNDP). While it is feasible to use a brute-force, integer-programming-based approach for tackling small instances of this problem, we have resorted to a dual-ascent approximation approach for mid/large-scale instances. The quality of the approximation approach is evaluated in terms of its computational efficiency and network cost sub-optimality. Sensitivity analysis w.r.t. various network/traffic parameters are also conducted. We then describe how one can apply our optimization results to better configure BGP as well as other intra-domain routing protocols. This serves as a first-step towards the auto-configuration of Internet routing protocols, BGP in particular, which is "well-known" for its tedious and error-prone configuration needs.published_or_final_versio
    corecore