4,411 research outputs found

    Discrete-Time sliding mode with time delay estimation of a six-phase induction motor drive

    Get PDF
    This paper investigates the problem of stator current control in presence of uncertainties and unmeasurable rotor current for a six-phase induction motor drive. An inner control loop based on a robust discrete-time sliding mode with time delay estimation method is proposed to ensure the finite-time convergence of the stator currents to their desired references while the proportional-integral controller is used for the outer speed control. Sufficient conditions are established to ensure the stability of the closed-loop system. Simulation results were carried out to verify the performance of the proposed robust control strategy for a six-phase induction motor drive.CONACYT – Consejo Nacional de Ciencia y TecnologíaPROCIENCI

    Self-Commissioning Algorithm for Inverter Non-Linearity Compensation in Sensorless Induction Motor Drives

    Get PDF
    In many sensorless field-oriented control schemes for induction motor (IM) drives, flux is estimated by means of measured motor currents and control reference voltages. In most cases, flux estimation is based on the integral of back-electromotive-force (EMF) voltages. Inverter nonlinear errors (dead-time and on-state voltage drops) introduce a distortion in the estimated voltage that reduces the accuracy of the flux estimation, particularly at low speed. In the literature, most of the compensation techniques of such errors require the offline identification of the inverter model and offline postprocessing. This paper presents a simple and accurate method for the identification of inverter parameters at the drive startup. The method is integrated into the control code of the IM drive, and it is based on the information contained in the feedback signal of the flux observer. The procedure applies, more in general, to all those sensorless ac drives where the flux is estimated using the back-EMF integration, not only for IM drives but also for permanent-magnet synchronous motor drives (surface-mounted permanent magnet and interior permanent magnet). A self-commissioning algorithm is presented and tested for the sensorless control of an IM drive, implemented on a fixed-point DSP. The feasibility and effectiveness of the method are demonstrated by experimental result

    Comparative study of non-linear controllers applied to a six-phase induction machine

    Get PDF
    This paper presents a comparative study of two discrete nonlinear current controllers with fixed switching frequency, one based on the model predictive control and the other to robust discrete-time sliding mode, applied to a six-phase induction machine. The outer speed control is based on the proportional-integral controller. Simulation results are presented to demonstrate the performance of the two current control strategies using the mean squared error, root mean square and total harmonic distortion as figures of merit, thus concluding the advantages and limitations of each current controller at steady and transient states.CONACYT – Consejo Nacional de Ciencia y Tecnologí

    Performance Analysis of DTC-SVM Sliding Mode Controllers-Based Parameters Estimator of Electric Motor Speed Drive

    Get PDF
    This paper is concerned with a framework which unifies direct torque control space vector modulation (DTC-SVM) and variable structure control (VSC). The result is a hybrid VSC-DTC-SVM controller design which eliminates several major limitations of the two individual controls and retains merits of both controllers. It has been shown that obtained control laws are very sensitive to variations of the stator resistance, the rotor resistance, and the mutual inductance. This paper discusses the performances of adaptive controllers of VSC-DTC-SVM monitored induction motor drive in a wide speed range and even in the presence of parameters uncertainties and mismatching disturbances. Better estimations of the stator resistance, the rotor resistance, and the mutual inductance yield improvements of induction motor performances using VSC-DTC-SVM, thereby facilitating torque ripple minimization. Simulation results verified the performances of the proposed approach

    Improved direct torque control using Kalman filter: application to a doubly-fed machine

    Get PDF
    Direct Torque Control (DTC) has been extensively researched and applied during the last two decades. However, it has only first been applied to the Brushless Doubly Fed Reluctance Machine (BDFRM) a few years ago in its basic form inheriting its intrinsic flux estimation problems that propagate throughout the algorithm and hence compromise the DTC performance. In this paper, we propose the use of Kalman Filter (KF) as an alternative to improve the estimation and consequently the control performance of the DTC. The KF is designed around a nominal model, but is shown to be reliable over the whole operating range of the BDFRM. Moreover, we use a modified robust exact differentiator based on Sliding Mode (SM) techniques to calculate the angular velocity from an angular position encoder. Computer simulations are meticulously designed to take into account real-world physical constraints and thus show illustrative supporting results as expected from an experimental setup

    Induction Motors

    Get PDF
    AC motors play a major role in modern industrial applications. Squirrel-cage induction motors (SCIMs) are probably the most frequently used when compared to other AC motors because of their low cost, ruggedness, and low maintenance. The material presented in this book is organized into four sections, covering the applications and structural properties of induction motors (IMs), fault detection and diagnostics, control strategies, and the more recently developed topology based on the multiphase (more than three phases) induction motors. This material should be of specific interest to engineers and researchers who are engaged in the modeling, design, and implementation of control algorithms applied to induction motors and, more generally, to readers broadly interested in nonlinear control, health condition monitoring, and fault diagnosis

    Discrete-time sliding mode control based on disturbance observer applied to current control of permanent magnet synchronous motor

    Get PDF
    This paper proposes a robust current control technique based on a discrete-time sliding mode controller and a disturbance observer for high-performance permanent magnet synchronous motor (PMSM) drives. This scheme is applied in the PMSM current control loops to enable the decoupling between the dq current axes, rejection of disturbances caused by mechanical load changes and robustness under parametric uncertainties. In order to ensure the discrete-time sliding mode properties, which make the system cross the sliding surface at each sampling period, the PMSM model is extended, including the digital implementation delay resulting from the discrete-time algorithm execution. The development of this method allows direct implementation in microcontrollers and digital signal processors. Stability and convergence analysis are developed in the discrete-time domain. Simulation and experimental results demonstrate the effectiveness and good performance of the proposed current control approach

    Zero Speed Rotor Position Estimator based on Sliding Mode Control for Permanent Magnet Synchronous Motor

    Get PDF
    The permImplementation of an algorithm based on SMC that uses a unique technique for the rotor position estimation of a PMSM for low and zero speeds, by using inherit motor effect called "Saliency". The work proves that the rotor position estimation is possible with the information that is present in the system under SMC due to the saliency effect. Therefore, there is no need to inject any signal into the machine, which causes the increment in the losses of the machine, or to design dynamic observers. The algorithm is implemented in a DSP controller and the tests with the complete hardware platform validate the proposal in open loop and in sensorless operation

    Aportaciones al control no lineal de corriente aplicado a accionamientos de inducción de seis fases

    Get PDF
    Las maquinas multifásicas (mayor a tres fases) se han vuelto ampliamente reconocidas como alternativas a los típicos esquemas trifásicos en numerosas aplicaciones, principalmente en aquellas en las que se requieren mayor fiabilidad y disponibilidad (funcionamiento en post-falta). Algunos ejemplos de la adopción de esta tecnología apunta por un lado al sector industrial, y por otro a sistemas de tracción eléctrica, entre los que se destacan los vehículos eléctricos. Así mismo, recientemente se ha explorado su uso en aplicaciones de energías renovables entre los que se destaca la generación eólica. Desde el punto de vista del control, las estrategias de control aplicadas a maquinas multifásicas, han evolucionado en los últimos años, desde la extensión de los métodos de control escalar, vectorial y control directo de par, utilizados en las maquinas trifásicas, a métodos más sofisticados, tales como los controles no lineales, como el control deslizante y el control predictivo.CONACYT - Consejo Nacional de Ciencia y TecnologíaPROCIENCI

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines
    corecore