7,394 research outputs found

    A study on high accuracy discrete-time sliding mode control

    Get PDF
    In this paper a Discrete-Time Sliding-Mode based controller design for high accuracy motion control systems is presented. The controller is designed for a general SISO system with nonlinearity and external disturbance. Closed-Loop behavior of the general system with the proposed control and Lyapunov stability is shown and the error of the closed loop system is proven to be within an o(T2). The proposed controller is applied to a stage driven by a piezo drive that is known to suffer from hysteresis nonlinearity in the control gain. Proposed SMC controller is proven to offer chattering-free motion and rejection of the disturbances represented by hysteresis and the time variation of the piezo drive parameters. As a separate idea to enhance the accuracy of the closed loop system a combination of disturbance rejection method and the SMC controller is explored and its effectiveness is experimentally demonstrated. Closed-loop experiments are presented using PID controller with and without disturbance compensation and Sliding-Mode Controller with and without disturbance compensation for the purpose of comparison

    Experimental investigation of a SMC high precision control

    Get PDF
    In this paper a discrete-time Sliding-Mode (SM) based controller for high accuracy position control is investigated. The controller is designed for a general SISO system with nonlinearity and external disturbance. It will be shown that application of the proposed controller forces the state trajectory to be within an O(Ts 2). The proposed controller is applied to a stage driven by a piezo drive that is known to suffer from nonlinearity. As a separate idea to enhance the accuracy of the closed loop system a combination of disturbance rejection method and the SMC controller is explored and its effectiveness is experimentally demonstrated. Closed-loop experiments are presented using PID controller with and without disturbance compensation and Sliding-Mode Controller with and without disturbance compensation for the purpose of comparison

    MIMO First and Second Order Discrete Sliding Mode Controls of Uncertain Linear Systems under Implementation Imprecisions

    Full text link
    The performance of a conventional model-based controller significantly depends on the accuracy of the modeled dynamics. The model of a plant's dynamics is subjected to errors in estimating the numerical values of the physical parameters, and variations over operating environment conditions and time. These errors and variations in the parameters of a model are the major sources of uncertainty within the controller structure. Digital implementation of controller software on an actual electronic control unit (ECU) introduces another layer of uncertainty at the controller inputs/outputs. The implementation uncertainties are mostly due to data sampling and quantization via the analog-to-digital conversion (ADC) unit. The failure to address the model and ADC uncertainties during the early stages of a controller design cycle results in a costly and time consuming verification and validation (V&V) process. In this paper, new formulations of the first and second order discrete sliding mode controllers (DSMC) are presented for a general class of uncertain linear systems. The knowledge of the ADC imprecisions is incorporated into the proposed DSMCs via an online ADC uncertainty prediction mechanism to improve the controller robustness characteristics. Moreover, the DSMCs are equipped with adaptation laws to remove two different types of modeling uncertainties (multiplicative and additive) from the parameters of the linear system model. The proposed adaptive DSMCs are evaluated on a DC motor speed control problem in real-time using a processor-in-the-loop (PIL) setup with an actual ECU. The results show that the proposed SISO and MIMO second order DSMCs improve the conventional SISO first order DSMC tracking performance by 69% and 84%, respectively. Moreover, the proposed adaptation mechanism is able to remove the uncertainties in the model by up to 90%.Comment: 10 pages, 11 figures, ASME 2017 Dynamic Systems and Control Conferenc

    Discrete sliding mode control of piezo actuator in nano-scale range

    Get PDF
    In this paper Discrete Sliding Mode Control (SMC) of Piezo actuator is demonstrated in order to achieve a very high accuracy in Nano-scale with the desired dynamics. In spite of the fast dynamics of the Piezo actuator the problem of chattering is eliminated with the SMC control structure. The Piezo actuator suffers from hysteresis loop which is the inherent property and it gives rise to the dominant non-linearity in the system. The proposed SMC control structure has been proved to deliver chattering free motion along with the compensation of the non linearity present due to hysteresis in the system. To further enhance the accuracy of the closed loop system and to be invariant to changes in the plant parameters a robust disturbance observer is designed on SMC framework by taking into consideration the lumped nominal plant parameters. Experimental results for closed loop position are presented in order to verify the Nano-scale accuracy

    Model following control with discrete time SMC for time-delayed bilateral control systems

    Get PDF
    This paper proposes a new algorithm based on model following control to recover the uncompensated slave disturbance on time delayed motion control systems having contact with environment. In the previous works, a modified Communication Disturbance Observer (CDOB) was shown to be successful in ensuring position tracking in free motion under varying time delay. However, experiments show that due to the imperfections in slave plant Disturbance Observer (DOB) when there is rapid change of external force on the slave side, as in the case of environment contact, position tracking is degraded. This paper first analyzes the effect of environment contact for motion control systems with disturbance observers. Following this analysis, a model following controller scheme is proposed to restore the ideal motion on the slave system. A virtual plant is introduced which accepts the current from the master side and determines what the position output would be if there was no environment. Based on the error bet ween actual system and model system, a discrete time sliding mode controller is designed which enforces the real slave system to track the virtual slave output. In other words, convergence of slave position to the master position is achieved even though there is contact with environment. Experimental verification of the proposed control scheme also shows the improvement in slave position tracking under contact forces

    Sliding mode based piezoelectric actuator control

    Get PDF
    In this paper a control of method for a piezoelectric stack actuator control is proposed. In addition briefly the usage of the same methods for estimation of external force acting to the actuator in contact with environment is discussed. The method uses sliding mode framework to design both the observer and the controller based on an electromechanical lumped model of the piezoelectric actuator. Furthermore, using a nonlinear differential equation the internal hysteresis disturbance is removed from the total disturbance in an attempt to estimate the external force acting on the actuator. It is then possible to use this external force estimate as a means of force control of the actuator. Simulation and experiments are compared for validating the disturbance and external force estimation technique. Some experiments that incorporate disturbance compensation in a closed-loop SMC control algorithm are also presented to prove the effectiveness of this method in producing high precision motion

    Robust motion control SMC point of view

    Get PDF
    In this paper the robust motion control systems in the sliding mode framework are discussed. Due to the fact that a motion control system with n d.o.f may be mathematically formulated in a unique way as a system composed of n second order systems, design of such a system may be formulated in a unique way as a requirement that the generalized coordinates must satisfy certain algebraic constraint. Such a formulation leads naturally to sliding mode framework to be applied. In this approach constraint manifolds are selected to coincide with desired constraints on the generalized coordinates. It has been shown that the CMC can be interpreted as a realization of the acceleration controller thus possessing all robust properties of the acceleration controller framework. The possibility to treat both unconstrained motion (the motion without contact with environment) and constrained motion in the same way is shown

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Fuzzy self-tuning PI controller for phase-shifted series resonant converters

    Get PDF
    corecore