1,831 research outputs found

    Variance-optimal hedging for processes with stationary independent increments

    Get PDF
    We determine the variance-optimal hedge when the logarithm of the underlying price follows a process with stationary independent increments in discrete or continuous time. Although the general solution to this problem is known as backward recursion or backward stochastic differential equation, we show that for this class of processes the optimal endowment and strategy can be expressed more explicitly. The corresponding formulas involve the moment, respectively, cumulant generating function of the underlying process and a Laplace- or Fourier-type representation of the contingent claim. An example illustrates that our formulas are fast and easy to evaluate numerically.Comment: Published at http://dx.doi.org/10.1214/105051606000000178 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Variance optimal hedging for continuous time additive processes and applications

    Full text link
    For a large class of vanilla contingent claims, we establish an explicit F\"ollmer-Schweizer decomposition when the underlying is an exponential of an additive process. This allows to provide an efficient algorithm for solving the mean variance hedging problem. Applications to models derived from the electricity market are performed

    Efficient option pricing with transaction costs

    Get PDF
    A fast numerical algorithm is developed to price European options with proportional transaction costs using the utility-maximization framework of Davis (1997). This approach allows option prices to be computed by solving the investor’s basic portfolio selection problem without insertion of the option payoff into the terminal value function. The properties of the value function can then be used to drastically reduce the number of operations needed to locate the boundaries of the no-transaction region, which leads to very efficient option valuation. The optimization problem is solved numerically for the case of exponential utility, and comparisons with approximately replicating strategies reveal tight bounds for option prices even as transaction costs become large. The computational technique involves a discrete-time Markov chain approximation to a continuous-time singular stochastic optimal control problem. A general definition of an option hedging strategy in this framework is developed. This involves calculating the perturbation to the optimal portfolio strategy when an option trade is executed

    Asymptotic Power Utility-Based Pricing and Hedging

    Full text link
    Kramkov and Sirbu (2006, 2007) have shown that first-order approximations of power utility-based prices and hedging strategies can be computed by solving a mean-variance hedging problem under a specific equivalent martingale measure and relative to a suitable numeraire. In order to avoid the introduction of an additional state variable necessitated by the change of numeraire, we propose an alternative representation in terms of the original numeraire. More specifically, we characterize the relevant quantities using semimartingale characteristics similarly as in Cerny and Kallsen (2007) for mean-variance hedging. These results are illustrated by applying them to exponential L\'evy processes and stochastic volatility models of Barndorff-Nielsen and Shephard type.Comment: 32 pages, 4 figures, to appear in "Mathematics and Financial Economics

    Option Pricing with Transaction Costs Using a Markov Chain Approximation

    Get PDF
    An e cient algorithm is developed to price European options in the pres- ence of proportional transaction costs, using the optimal portfolio frame- work of Davis (1997). A fair option price is determined by requiring that an in nitesimal diversion of funds into the purchase or sale of options has a neutral e ect on achievable utility. This results in a general option pricing formula, in which option prices are computed from the solution of the investor's basic portfolio selection problem, without the need to solve a more complex optimisation problem involving the insertion of the op- tion payo into the terminal value function. Option prices are computed numerically using a Markov chain approximation to the continuous time singular stochastic optimal control problem, for the case of exponential utility. Comparisons with approximately replicating strategies are made. The method results in a uniquely speci ed option price for every initial holding of stock, and the price lies within bounds which are tight even as transaction costs become large. A general de nition of an option hedg- ing strategy for a utility maximising investor is developed. This involves calculating the perturbation to the optimal portfolio strategy when an option trade is executed
    • …
    corecore