9,416 research outputs found

    Colorectal Cancer Through Simulation and Experiment

    Get PDF
    Colorectal cancer has continued to generate a huge amount of research interest over several decades, forming a canonical example of tumourigenesis since its use in Fearon and Vogelsteinā€™s linear model of genetic mutation. Over time, the field has witnessed a transition from solely experimental work to the inclusion of mathematical biology and computer-based modelling. The fusion of these disciplines has the potential to provide valuable insights into oncologic processes, but also presents the challenge of uniting many diverse perspectives. Furthermore, the cancer cell phenotype defined by the ā€˜Hallmarks of Cancerā€™ has been extended in recent times and provides an excellent basis for future research. We present a timely summary of the literature relating to colorectal cancer, addressing the traditional experimental findings, summarising the key mathematical and computational approaches, and emphasising the role of the Hallmarks in current and future developments. We conclude with a discussion of interdisciplinary work, outlining areas of experimental interest which would benefit from the insight that mathematical and computational modelling can provide

    Analysis of signalling pathways using the prism model checker

    Get PDF
    We describe a new modelling and analysis approach for signal transduction networks in the presence of incomplete data. We illustrate the approach with an example, the RKIP inhibited ERK pathway [1]. Our models are based on high level descriptions of continuous time Markov chains: reactions are modelled as synchronous processes and concentrations are modelled by discrete, abstract quantities. The main advantage of our approach is that using a (continuous time) stochastic logic and the PRISM model checker, we can perform quantitative analysis of queries such as if a concentration reaches a certain level, will it remain at that level thereafter? We also perform standard simulations and compare our results with a traditional ordinary differential equation model. An interesting result is that for the example pathway, only a small number of discrete data values is required to render the simulations practically indistinguishable

    Jump-Diffusion Approximation of Stochastic Reaction Dynamics: Error bounds and Algorithms

    Full text link
    Biochemical reactions can happen on different time scales and also the abundance of species in these reactions can be very different from each other. Classical approaches, such as deterministic or stochastic approach, fail to account for or to exploit this multi-scale nature, respectively. In this paper, we propose a jump-diffusion approximation for multi-scale Markov jump processes that couples the two modeling approaches. An error bound of the proposed approximation is derived and used to partition the reactions into fast and slow sets, where the fast set is simulated by a stochastic differential equation and the slow set is modeled by a discrete chain. The error bound leads to a very efficient dynamic partitioning algorithm which has been implemented for several multi-scale reaction systems. The gain in computational efficiency is illustrated by a realistically sized model of a signal transduction cascade coupled to a gene expression dynamics.Comment: 32 pages, 7 figure

    A structured approach for the engineering of biochemical network models, illustrated for signalling pathways

    Get PDF
    http://dx.doi.org/10.1093/bib/bbn026Quantitative models of biochemical networks (signal transduction cascades, metabolic pathways, gene regulatory circuits) are a central component of modern systems biology. Building and managing these complex models is a major challenge that can benefit from the application of formal methods adopted from theoretical computing science. Here we provide a general introduction to the field of formal modelling, which emphasizes the intuitive biochemical basis of the modelling process, but is also accessible for an audience with a background in computing science and/or model engineering. We show how signal transduction cascades can be modelled in a modular fashion, using both a qualitative approach { Qualitative Petri nets, and quantitative approaches { Continuous Petri Nets and Ordinary Differential Equations. We review the major elementary building blocks of a cellular signalling model, discuss which critical design decisions have to be made during model building, and present ..

    Modelling the influence of RKIP on the ERK signalling pathway using the stochastic process algebra PEPA

    Get PDF
    This paper examines the influence of the Raf Kinase Inhibitor Protein (RKIP) on the Extracellular signal Regulated Kinase (ERK) signalling pathway [5] through modelling in a Markovian process algebra, PEPA [11]. Two models of the system are presented, a reagent-centric view and a pathway-centric view. The models capture functionality at the level of subpathway, rather than at a molecular level. Each model affords a different perspective of the pathway and analysis. We demonstrate the two models to be formally equivalent using the timing-aware bisimulation defined over PEPA models and discuss the biological significance
    • ā€¦
    corecore