29 research outputs found

    Stress response and structural transitions in sheared gyroidal and lamellar amphiphilic mesophases: lattice-Boltzmann simulations

    Get PDF
    We report on the stress response of gyroidal and lamellar amphiphilic mesophases to steady shear simulated using a bottom-up lattice-Boltzmann model for amphiphilic fluids and sliding periodic (Lees-Edwards) boundary conditions. We study the gyroid per se (above the sponge-gyroid transition, of high crystallinity) and the molten gyroid (within such a transition, of shorter-range order). We find that both mesophases exhibit shear-thinning, more pronounced and at lower strain rates for the molten gyroid. At late times after the onset of shear, the skeleton of the crystalline gyroid becomes a structure of interconnected irregular tubes and toroidal rings, mostly oriented along the velocity ramp imposed by the shear, in contradistinction with free-energy Langevin-diffusion studies which yield a much simpler structure of disentangled tubes. We also compare the shear stress and deformation of lamellar mesophases with and without amphiphile when subjected to the same shear flow applied normal to the lamellae. We find that the presence of amphiphile allows (a) the shear stress at late times to be higher than in the case without amphiphile, and (b) the formation of rich patterns on the sheared interface, characterised by alternating regions of high and low curvature.Comment: 15 pages, 10 figures, Physical Review E, in pres

    Entropic lattice Boltzmann methods

    Full text link
    We present a general methodology for constructing lattice Boltzmann models of hydrodynamics with certain desired features of statistical physics and kinetic theory. We show how a methodology of linear programming theory, known as Fourier-Motzkin elimination, provides an important tool for visualizing the state space of lattice Boltzmann algorithms that conserve a given set of moments of the distribution function. We show how such models can be endowed with a Lyapunov functional, analogous to Boltzmann's H, resulting in unconditional numerical stability. Using the Chapman-Enskog analysis and numerical simulation, we demonstrate that such entropically stabilized lattice Boltzmann algorithms, while fully explicit and perfectly conservative, may achieve remarkably low values for transport coefficients, such as viscosity. Indeed, the lowest such attainable values are limited only by considerations of accuracy, rather than stability. The method thus holds promise for high-Reynolds number simulations of the Navier-Stokes equations.Comment: 54 pages, 16 figures. Proc. R. Soc. London A (in press

    Orientation and rotational diffusion of fibers in semidilute suspension

    Get PDF
    The dynamics of fiber orientation is of great interest for efforts to predict the microstructure and material properties of a suspension flow system. In this research a fiber-level, hybrid simulation method, LBM‒EBF (coupled lattice‒Boltzmann method with the external boundary force method) is undertaken to advance the current understanding of the hydrodynamic interaction induced rotational diffusion mechanism for rigid fibers in semidilute suspension of low Reynolds number flow. The LBM‒EBF simulations correctly predict the orbit constant distribution of fibers in a sheared semidilute suspension flow. It is demonstrated that an anisotropic, weak rotary diffusion model can fit the orbit constant distribution very well, but it can not describe the asymmetry in Stokes flow observed in semidilute suspension. The rotational diffusion process is then characterized with a three dimensional spatial tensor representation of the rotational diffusivity. A scalar measure of the rotational diffusion‒'scalar Folgar‒Tucker constant', C[subscript I], is extracted from this tensor. The study provides substantial numerical evidence that the range of C[subscript I] (0.0038 to 0.0165) obtained by Folgar&Tucker (J. reinf. plast. and comp, v.3, 1984) in a semidilute regime is overly diffusive, and that the correct magnitude is of O(10⁻⁴). The study reveals that the interactions among fibers become more frequent with either the decrease of fiber aspect-ratio, r[subscript p] (keeping nL³ constant, where n is the fiber number density, and L is the fiber length) or with the increase of nL³ (keeping r[subscript p] constant) in the semidilute regime, which in consequence causes an increase in C[subscript I]. The rheological properties of sheared semidilute suspension are also computed with direct LBM‒EBF simulations. The LBM‒EBF investigation is extended to characterize the fiber orientation in a linearly contracting channel similar to a paper machine 'headbox'. It is found that the rotational diffusion is the predominant term over the strain rate in the semidilute regime for a low Reynolds number flow, and it results in a decreasing trend of rotational Peclet number, Pe, along the contraction centerline. Lastly, in order to improve the numerical consistency of the existing LBM‒EBF approach, a modification to the body force term in the LB equation is suggested, which can recover the exact macroscopic hydrodynamics from the mesoscale.Ph.D.Committee Chair: Cyrus, Aidun; Committee Member: Breedveld, Victor; Committee Member: Ghiaasiaan, Mostafa S.; Committee Member: Salant, Richard F.; Committee Member: Vuduc, Richar

    The BGK equation as the limit of an NN particle system

    Get PDF
    The spatially homogeneous BGK equation is obtained as the limit if a model of a many particle system, similar to Mark Kac's charicature of the spatially homogeneous Boltzmann equation.Comment: Minor corrections and modifications only. This version is essentially the same as the published pape

    Implicit-correction-based immersed boundary-lattice Boltzmann method with two relaxation times

    Get PDF
    In the present paper, we verify the effectiveness of the two-relaxation-time (TRT) collision operator in reducing boundary slip computed by the immersed boundary-lattice Boltzmann method (IB-LBM). In the linear collision operator of the TRT, we decompose the distribution function into symmetric and antisymmetric components and define the relaxation parameters for each part.The Chapman-Enskog expansion indicates that one relaxation time for the symmetric component is related to the kinematic viscosity. Rigorous analysis of the symmetric shear flows reveals that the relaxation time for the antisymmetric part controls the velocity gradient, the boundary velocity, and the boundary slip velocity computed by the IB-LBM. Simulation of the symmetric shear flows, the symmetric Poiseuille flows, and the cylindrical Couette flows indicates that the profiles of the numerical velocity calculated by the TRT collision operator under the IB-LBM framework exactly agree with those of the multi-relaxation time (MRT). The TRT is as effective in removingthe boundary slip as the MRT. We demonstrate analytically and numerically that the error of the boundary velocity is caused by the smoothing technique using the delta function used in the interpolation method. In the simulation of the flow past a circular cylinder, the IB-LBM based on the implicit correction method with the TRT succeeds in preventing the flow penetration through the solid surface as well as unphysical velocity distortion. The drag coefficient, the wake length, and the separation points calculated by the present IB-LBM agree well with previous studies at Re =10, 20, and 40

    Investigation of the hydrodynamics of a two component lattice Bhatnagar-Gross-Krook fluid.

    Get PDF
    We present results from a computer simulation of an immiscible two component fluid, using a Lattice Boltzmann BGK D2Q9 scheme. Each fluid component is identified by a colour tag (either red or blue), and the immiscible behaviour arises from the implementation of colour segregation imposed on the lattice fluid. For two dimensional, microcurrent free planar interfaces between the two immiscible fluids we derive expressions for static interfacial tensions and interfacial distributions of the two fluids. Extending our analysis to curved interfaces, we propose a scheme for incorporating the influence of interfacial microcurrents that is based upon general symmetry arguments and is correct to second order in lattice velocity. The analysis demonstrates that the interfacial microcurrents have only second order influence upon the macroscopic behaviour of the model. We find good agreement between our calculations and simulation results based on the microcurrent stream function and surface tension results from the pressure tensor or Laplace law.We examine the tangential stress transmission in the immiscible interface, by the investigation of the relationship between fluid shear and fluid viscosity across a plar nar symmetric interface. We find comprehensive agreement with theory, for the tangential hydrodynamic boundary condition. The examination of normal stress transmission in our two dimensional simulation is facilitated from correct behaviour of tangential stress. We develop a Fourier analysis technique which allows a quanti-tative analysis of the anisotropy of the interface. This technique has facilitated the development of a further modification to the interface perturbation, which improves the macroscopic surface tension isotropy and reduces the magnitude of the parasitic microcurrent.As an application of our model we simulate the induced deformation and burst of neutrally buoyant fluid drops subjected to external simple shear and solenoidal irrotational flow. Qualitatively the drops are seen to deform and orientate correctly, with respect to the external flow. Measuring the dependence of critical shear rate for drop rupture on flow parameters, our results validate the method over a range of simulation variables. The model's interfacial tension parameter < 7, undeformed drop radius R, and BGK relaxation parameter u are all found to have the correct influence upon the burst process as required by hydrodynamic theory. We note that the macroscopic surface tension and fluid viscosity are coupled, however this does not limit the application of the model

    Fluid Flow and Heat Transfer in Cellular Solids

    Get PDF
    To determine the characteristics and properties of cellular solids for an application, and to allow a systematic practical use by means of correlations and modelling approaches, we perform experimental investigations and develop numerical methods. In view of coupled multi-physics simulations, we employ the phase-field method. Finally, the applicability is demonstrated exemplarily for open-cell metal foams, providing qualitative and quantitative comparison with experimental data

    Self-adaptive isogeometric spatial discretisations of the first and second-order forms of the neutron transport equation with dual-weighted residual error measures and diffusion acceleration

    Get PDF
    As implemented in a new modern-Fortran code, NURBS-based isogeometric analysis (IGA) spatial discretisations and self-adaptive mesh refinement (AMR) algorithms are developed in the application to the first-order and second-order forms of the neutron transport equation (NTE). These AMR algorithms are shown to be computationally efficient and numerically accurate when compared to standard approaches. IGA methods are very competitive and offer certain unique advantages over standard finite element methods (FEM), not least of all because the numerical analysis is performed over an exact representation of the underlying geometry, which is generally available in some computer-aided design (CAD) software description. Furthermore, mesh refinement can be performed within the analysis program at run-time, without the need to revisit any ancillary mesh generator. Two error measures are described for the IGA-based AMR algorithms, both of which can be employed in conjunction with energy-dependent meshes. The first heuristically minimises any local contributions to the global discretisation error, as per some appropriate user-prescribed norm. The second employs duality arguments to minimise important local contributions to the error as measured in some quantity of interest; this is commonly known as a dual-weighted residual (DWR) error measure and it demands the solution to both the forward (primal) and the adjoint (dual) NTE. Finally, convergent and stable diffusion acceleration and generalised minimal residual (GMRes) algorithms, compatible with the aforementioned AMR algorithms, are introduced to accelerate the convergence of the within-group self-scattering sources for scattering-dominated problems for the first and second-order forms of the NTE. A variety of verification benchmark problems are analysed to demonstrate the computational performance and efficiency of these acceleration techniques.Open Acces
    corecore