192 research outputs found

    EPypes: a framework for building event-driven data processing pipelines

    Get PDF
    Many data processing systems are naturally modeled as pipelines, where data flows though a network of computational procedures. This representation is particularly suitable for computer vision algorithms, which in most cases possess complex logic and a big number of parameters to tune. In addition, online vision systems, such as those in the industrial automation context, have to communicate with other distributed nodes. When developing a vision system, one normally proceeds from ad hoc experimentation and prototyping to highly structured system integration. The early stages of this continuum are characterized with the challenges of developing a feasible algorithm, while the latter deal with composing the vision function with other components in a networked environment. In between, one strives to manage the complexity of the developed system, as well as to preserve existing knowledge. To tackle these challenges, this paper presents EPypes, an architecture and Python-based software framework for developing vision algorithms in a form of computational graphs and their integration with distributed systems based on publish-subscribe communication. EPypes facilitates flexibility of algorithm prototyping, as well as provides a structured approach to managing algorithm logic and exposing the developed pipelines as a part of online systems

    Statically-analyzed stream monitoring for cyber-physical Systems

    Get PDF
    Cyber-physical systems are digital systems interacting with the physical world. Even though this induces an inherent complexity, they are responsible for safety-critical tasks like governing nuclear power plants or controlling autonomous vehicles. To preserve trust into the safety of such systems, this thesis presents a runtime verification approach designed to generate trustworthy monitors from a formal specification. These monitors are responsible for observing the cyber-physical system during runtime and ensuring its safety. As underlying language, I present the asynchronous real-time specification language RTLola. It contains primitives for arithmetic properties and grants precise control over the timing of the monitor. With this, it enables specifiers to express properties relevant to cyber-physical systems. The thesis further presents a static analysis that identifies inconsistencies in the specification and provides insights into the dynamic behavior of the monitor. As a result, the resource consumption of the monitor becomes predictable. The generation of the monitor produces either a hardware description synthesizable onto programmable hardware, or Rust code with verification annotation. These annotations allow for proving the correctness of the monitor with respect to the semantics of RTLola. Last, I present the construction of a conservative hybrid model of the underlying system using information extracted from the specification. This model enables further verification steps.Cyber-physische Systeme sind digitale Systeme, die mit der physischen Welt interagieren. Obwohl das zu einer inhärenten Komplexität führt, sind sie verantwortlich für sicherheitskritische Aufgaben wie der Steuerung von Kernkraftwerken oder autonomen Fahrzeugen. Umdas Vertrauen in deren Sicherheit zu wahren, präsentiert diese Doktorarbeit einen Ansatz zur Laufzeitverifikation, konzipiert, um vertrauenswürdige Monitore aus einer formalen Spezifikation zu generieren. Diese Monitore sind dafür verantwortlich, das cyber-physische System zur Laufzeit zu überwachen und dessen Sicherheit zu gewährleisten. Als zugrundeliegende Sprache präsentiere ich die asynchrone Echtzeit-Spezifikationssprache RTLola. Sie enthält Primitiven für arithmetische Eigenschaften und gewährt präzise Kontrolle über das Timing des Monitors. Damit wird es Spezifizierenden ermöglicht Eigenschaften auszudrücken, die für Cyber-physische Systeme relevant sind. Weiterhin präsentiert diese Doktorarbeit eine statische Analyse, die Unstimmigkeiten in der Spezifikation identifiziert und Einblicke in das dynamische Verhalten des Monitors liefert. Aufgrund dessen wird der Ressourcenverbrauch des Monitors vorhersehbar. Die Generierung des Monitors erzeugt entweder eine Hardwarebeschreibung, die auf programmierbarer Hardware synthetisiert werden kann, oder Rust Code mit Verifikationsannotationen. Diese Annotationen erlauben es, die Korrektheit des Monitors bezogen auf die Semantik von RTLola zu beweisen. Abschließend präsentiere ich die Konstruktion von einem konservativen hybriden Modell des zugrundeliegenden Systems anhand von Informationen, die aus der Spezifikation gewonnen wurden. Dieses Modell ermöglicht weitere Verifikationsschritte

    Self-learning Anomaly Detection in Industrial Production

    Get PDF
    corecore