2,506 research outputs found

    Loss systems in a random environment

    Full text link
    We consider a single server system with infinite waiting room in a random environment. The service system and the environment interact in both directions. Whenever the environment enters a prespecified subset of its state space the service process is completely blocked: Service is interrupted and newly arriving customers are lost. We prove an if-and-only-if-condition for a product form steady state distribution of the joint queueing-environment process. A consequence is a strong insensitivity property for such systems. We discuss several applications, e.g. from inventory theory and reliability theory, and show that our result extends and generalizes several theorems found in the literature, e.g. of queueing-inventory processes. We investigate further classical loss systems, where due to finite waiting room loss of customers occurs. In connection with loss of customers due to blocking by the environment and service interruptions new phenomena arise. We further investigate the embedded Markov chains at departure epochs and show that the behaviour of the embedded Markov chain is often considerably different from that of the continuous time Markov process. This is different from the behaviour of the standard M/G/1, where the steady state of the embedded Markov chain and the continuous time process coincide. For exponential queueing systems we show that there is a product form equilibrium of the embedded Markov chain under rather general conditions. For systems with non-exponential service times more restrictive constraints are needed, which we prove by a counter example where the environment represents an inventory attached to an M/D/1 queue. Such integrated queueing-inventory systems are dealt with in the literature previously, and are revisited here in detail

    Queues in a random environment

    Full text link
    Exponential single server queues with state dependent arrival and service rates are considered which evolve under influences of external environments. The transitions of the queues are influenced by the environment's state and the movements of the environment depend on the status of the queues (bi-directional interaction). The structure of the environment is constructed in a way to encompass various models from the recent Operation Research literature, where a queue is coupled e.g. with an inventory or with reliability issues. With a Markovian joint queueing-environment process we prove separability for a large class of such interactive systems, i.e. the steady state distribution is of product form and explicitly given: The queue and the environment processes decouple asymptotically and in steady state. For non-separable systems we develop ergodicity criteria via Lyapunov functions. By examples we show principles for bounding throughputs of non-separable systems by throughputs of two separable systems as upper and lower bound

    Discrete-time queues with variable service capacity: a basic model and its analysis

    Get PDF
    In this paper, we present a basic discrete-time queueing model whereby the service process is decomposed in two (variable) components: the demand of each customer, expressed in a number of work units needed to provide full service of the customer, and the capacity of the server, i.e., the number of work units that the service facility is able to perform per time unit. The model is closely related to multi-server queueing models with server interruptions, in the sense that the service facility is able to deliver more than one unit of work per time unit, and that the number of work units that can be executed per time unit is not constant over time. Although multi-server queueing models with server interruptions-to some extent-allow us to study the concept of variable capacity, these models have a major disadvantage. The models are notoriously hard to analyze and even when explicit expressions are obtained, these contain various unknown probabilities that have to be calculated numerically, which makes the expressions difficult to interpret. For the model in this paper, on the other hand, we are able to obtain explicit closed-form expressions for the main performance measures of interest. Possible applications of this type of queueing model are numerous: the variable service capacity could model variable available bandwidths in communication networks, a varying production capacity in factories, a variable number of workers in an HR-environment, varying capacity in road traffic, etc

    Modeling a healthcare system as a queueing network:The case of a Belgian hospital.

    Get PDF
    The performance of health care systems in terms of patient flow times and utilization of critical resources can be assessed through queueing and simulation models. We model the orthopaedic department of the Middelheim hospital (Antwerpen, Belgium) focusing on the impact of outages (preemptive and nonpreemptive outages) on the effective utilization of resources and on the flowtime of patients. Several queueing network solution procedures are developed such as the decomposition and Brownian motion approaches. Simulation is used as a validation tool. We present new approaches to model outages. The model offers a valuable tool to study the trade-off between the capacity structure, sources of variability and patient flow times.Belgium; Brownian motion; Capacity management; Decomposition; Health care; Healthcare; Impact; Model; Models; Performance; Performance measurement; Queueing; Queueing theory; Simulation; Stochastic processes; Structure; Studies; Systems; Time; Tool; Validation; Variability;

    Differential evolution to solve the lot size problem.

    Get PDF
    An Advanced Resource Planning model is presented to support optimal lot size decisions for performance improvement of a production system in terms of either delivery time or setup related costs. Based on a queueing network, a model is developed for a mix of multiple products following their own specific sequence of operations on one or more resources, while taking into account various sources of uncertainty, both in demand as well as in production characteristics. In addition, the model includes the impact of parallel servers and different time schedules in a multi-period planning setting. The corrupting influence of variabilities from rework and breakdown is explicitly modeled. As a major result, the differential evolution algorithm is able to find the optimal lead time as a function of the lot size. In this way, we add a conclusion on the debate on the convexity between lot size and lead time in a complex production environment. We show that differential evolution outperforms a steepest descent method in the search for the global optimal lot size. For problems of realistic size, we propose appropriate control parameters for the differential evolution in order to make its search process more efficient.Production planning; Lot sizing; Queueing networks; Differential evolution;

    A development of logistics management models for the Space Transportation System

    Get PDF
    A new analytic queueing approach was described which relates stockage levels, repair level decisions, and the project network schedule of prelaunch operations directly to the probability distribution of the space transportation system launch delay. Finite source population and limited repair capability were additional factors included in this logistics management model developed specifically for STS maintenance requirements. Data presently available to support logistics decisions were based on a comparability study of heavy aircraft components. A two-phase program is recommended by which NASA would implement an integrated data collection system, assemble logistics data from previous STS flights, revise extant logistics planning and resource requirement parameters using Bayes-Lin techniques, and adjust for uncertainty surrounding logistics systems performance parameters. The implementation of these recommendations can be expected to deliver more cost-effective logistics support
    • …
    corecore