2,388 research outputs found

    Three-dimensional full-field X-ray orientation microscopy

    Get PDF
    International audienceA previously introduced mathematical framework for full-field X-ray orientation microscopy is for the first time applied to experimental near-field diffraction data acquired from a polycrystalline sample. Grain by grain tomographic reconstructions using convex optimization and prior knowledge are carried out in a six-dimensional representation of position-orientation space, used for modelling the inverse problem of X-ray orientation imaging. From the 6D reconstruction output we derive 3D orientation maps, which are then assembled into a common sample volume. The obtained 3D orientation map is compared to an EBSD surface map and local misorientations, as well as remaining discrepancies in grain boundary positions are quantified. The new approach replaces the single orientation reconstruction scheme behind X-ray diffraction contrast tomography and extends the applicability of this diffraction imaging technique to material micro-structures exhibiting sub-grains and/or intra-granular orientation spreads of up to a few degrees. As demonstrated on textured sub-regions of the sample, the new framework can be extended to operate on experimental raw data, thereby bypassing the concept of orientation indexation based on diffraction spot peak positions. This new method enables fast, three-dimensional characterization with isotropic spatial resolution, suitable for time-lapse observations of grain microstructures evolving as a function of applied strain or temperature

    Investigating the effect of thermal gradients on stress in solid oxide fuel cell anodes using combined synchrotron radiation and thermal imaging

    Get PDF
    Thermal gradients can arise within solid oxide fuel cells (SOFCs) due to start-up and shut-down, non-uniform gas distribution, fast cycling and operation under internal reforming conditions. Here, the effects of operationally relevant thermal gradients on Ni/YSZ SOFC anode half cells are investigated using combined synchrotron X-ray diffraction and thermal imaging. The combination of these techniques has identified significant deviation from linear thermal expansion behaviour in a sample exposed to a one dimensional thermal gradient. Stress gradients are identified along isothermal regions due to the presence of a proximate thermal gradient, with tensile stress deviations of up to 75Â MPa being observed across the sample at a constant temperature. Significant strain is also observed due to the presence of thermal gradients when compared to work carried out at isothermal conditions

    Review of the Synergies Between Computational Modeling and Experimental Characterization of Materials Across Length Scales

    Full text link
    With the increasing interplay between experimental and computational approaches at multiple length scales, new research directions are emerging in materials science and computational mechanics. Such cooperative interactions find many applications in the development, characterization and design of complex material systems. This manuscript provides a broad and comprehensive overview of recent trends where predictive modeling capabilities are developed in conjunction with experiments and advanced characterization to gain a greater insight into structure-properties relationships and study various physical phenomena and mechanisms. The focus of this review is on the intersections of multiscale materials experiments and modeling relevant to the materials mechanics community. After a general discussion on the perspective from various communities, the article focuses on the latest experimental and theoretical opportunities. Emphasis is given to the role of experiments in multiscale models, including insights into how computations can be used as discovery tools for materials engineering, rather than to "simply" support experimental work. This is illustrated by examples from several application areas on structural materials. This manuscript ends with a discussion on some problems and open scientific questions that are being explored in order to advance this relatively new field of research.Comment: 25 pages, 11 figures, review article accepted for publication in J. Mater. Sc

    An orientation-space super sampling technique for six-dimensional diffraction contrast tomography

    Get PDF
    Diffraction contrast tomography (DCT) is an X-ray full-field imaging technique that allows for the non-destructive three-dimensional investigation of polycrystalline materials and the determination of the physical and morphological properties of their crystallographic domains, called grains. This task is considered more and more challenging with the increasing intra-granular deformation, also known as orientation-spread. The recent introduction of a sixdimensional reconstruction framework in DCT (6D-DCT) has proven to be able to address the intra-granular crystal orientation for moderately deformed materials. The approach used in 6D-DCT, which is an extended sampling of the six-dimensional combined position-orientation space, has a linear scaling between the number of sampled orientations, which determine the orientation-space resolution of the problem, and computer memory usage. As a result, the reconstruction of more deformed materials is limited by their high resource requirements from a memory and computational point of view, which can easily become too demanding for the currently available computer technologies. In this article we propose a super-sampling method for the orientation-space representation of the six-dimensional DCT framework that enables the reconstruction of more deformed cases by r

    Wide field 3D orientation contrast microscopy

    Get PDF

    Décomposition volumique d'images pour l'étude de la microstructure de la neige

    Get PDF
    Les avalanches de neige sont des phénomènes naturels complexes dont l'occurrence s'explique principalement par la structure et les propriétés du manteau neigeux. Afin de mieux comprendre les évolutions de ces propriétés au cours du temps, il est important de pouvoir caractériser la microstructure de la neige, notamment en termes de grains et de ponts de glace les reliant. Dans ce contexte, l'objectif de cette thèse est la décomposition d'échantillons de neige en grains individuels à partir d'images 3-D de neige obtenues par microtomographie X. Nous présentons ici deux méthodes de décomposition utilisant des algorithmes de géométrie discrète. Sur la base des résultats de ces segmentations, certains paramètres, comme la surface spécifique et la surface spécifique de contact entre grains sont ensuite estimés sur des échantillons de neiges variées. Ces méthodes de segmentation ouvrent de nouvelles perspectives pour la caractérisation de la microstructure de la neige, de ses propriétés, ainsi que de leur évolution au cours du temps.Snow avalanches are complex natural phenomena whose occurrence is mainly due to the structure and properties of the snowpack. To better understand the evolution of these properties over time, it is important to characterize the microstructure of snow, especially in terms of grains and ice necks that connect them. In this context, the objective of this thesis is the decomposition of snow samples into individual grains from 3-D images of snow obtained by X-ray microtomography. We present two decomposition methods using algorithms of discrete geometry. Based on the results of these segmentations, some parameters such as the specific surface area and the specific contact area between grains are then estimated from samples of several snow types. These segmentation methods offer new outlooks for the characterization of the microstructure of snow, its properties, and its time evolution

    Bringing modern mathematical modeling to orientation imaging for material science

    Get PDF
    The vast majority of metallic and ceramic objects have a granular microstructure, which has a direct influence on their mechanical behaviour. Understanding the microstructure of these materials is especially important for nuclear reactors and other safety-critical applications in which they are used. Modern mathematical tools and recent developments in computed tomography can be used to study the evolution of these materials when they are being deformed or heated

    Generalized balanced power diagrams for 3D representations of polycrystals

    Get PDF
    Characterizing the grain structure of polycrystalline material is an important task in material science. The present paper introduces the concept of generalized balanced power diagrams as a concise alternative to voxelated mappings. Here, each grain is represented by (measured approximations of) its center-of-mass position, its volume and, if available, by its second-order moments (in the non-equiaxed case). Such parameters may be obtained from 3D x-ray diffraction. As the exact global optimum of our model results from the solution of a suitable linear program it can be computed quite efficiently. Based on verified real-world measurements we show that from the few parameters per grain (3, respectively 6 in 2D and 4, respectively 10 in 3D) we obtain excellent representations of both equiaxed and non-equiaxed structures. Hence our approach seems to capture the physical principles governing the forming of such polycrystals in the underlying process quite well
    • …
    corecore