64,194 research outputs found

    Domain-Agnostic Batch Bayesian Optimization with Diverse Constraints via Bayesian Quadrature

    Full text link
    Real-world optimisation problems often feature complex combinations of (1) diverse constraints, (2) discrete and mixed spaces, and are (3) highly parallelisable. (4) There are also cases where the objective function cannot be queried if unknown constraints are not satisfied, e.g. in drug discovery, safety on animal experiments (unknown constraints) must be established before human clinical trials (querying objective function) may proceed. However, most existing works target each of the above three problems in isolation and do not consider (4) unknown constraints with query rejection. For problems with diverse constraints and/or unconventional input spaces, it is difficult to apply these techniques as they are often mutually incompatible. We propose cSOBER, a domain-agnostic prudent parallel active sampler for Bayesian optimisation, based on SOBER of Adachi et al. (2023). We consider infeasibility under unknown constraints as a type of integration error that we can estimate. We propose a theoretically-driven approach that propagates such error as a tolerance in the quadrature precision that automatically balances exploitation and exploration with the expected rejection rate. Moreover, our method flexibly accommodates diverse constraints and/or discrete and mixed spaces via adaptive tolerance, including conventional zero-risk cases. We show that cSOBER outperforms competitive baselines on diverse real-world blackbox-constrained problems, including safety-constrained drug discovery, and human-relationship-aware team optimisation over graph-structured space.Comment: 24 pages, 5 figure

    Offline Learning for Sequence-based Selection Hyper-heuristics

    Get PDF
    This thesis is concerned with finding solutions to discrete NP-hard problems. Such problems occur in a wide range of real-world applications, such as bin packing, industrial flow shop problems, determining Boolean satisfiability, the traveling salesman and vehicle routing problems, course timetabling, personnel scheduling, and the optimisation of water distribution networks. They are typically represented as optimisation problems where the goal is to find a ``best'' solution from a given space of feasible solutions. As no known polynomial-time algorithmic solution exists for NP-hard problems, they are usually solved by applying heuristic methods. Selection hyper-heuristics are algorithms that organise and combine a number of individual low level heuristics into a higher level framework with the objective of improving optimisation performance. Many selection hyper-heuristics employ learning algorithms in order to enhance optimisation performance by improving the selection of single heuristics, and this learning may be classified as either online or offline. This thesis presents a novel statistical framework for the offline learning of subsequences of low level heuristics in order to improve the optimisation performance of sequenced-based selection hyper-heuristics. A selection hyper-heuristic is used to optimise the HyFlex set of discrete benchmark problems. The resulting sequences of low level heuristic selections and objective function values are used to generate an offline learning database of heuristic selections. The sequences in the database are broken down into subsequences and the mathematical concept of a logarithmic return is used to discriminate between ``effective'' subsequences, that tend to lead to improvements in optimisation performance, and ``disruptive'' subsequences that tend to lead to worsening performance. Effective subsequences are used to improve hyper-heuristics performance directly, by embedding them in a simple hyper-heuristic design, and indirectly as the inputs to an appropriate hyper-heuristic learning algorithm. Furthermore, by comparing effective subsequences across different problem domains it is possible to investigate the potential for cross-domain learning. The results presented here demonstrates that the use of well chosen subsequences of heuristics can lead to small, but statistically significant, improvements in optimisation performance

    Hybrid evolutionary techniques for constrained optimisation design

    Get PDF
    This thesis a research program in which novel and generic optimisation methods were developed so that can be applied to a multitude of mathematically modelled business problems which the standard optimisation techniques often fail to deal with. The continuous and mixed discrete optimisation methods have been investigated by designing new approaches that allow users to more effectively tackle difficult optimisation problems with a mix of integer and real valued variables. The focus of this thesis presents practical suggestions towards the implementation of hybrid evolutionary approaches for solving optimisation problems with highly structured constraints. This work also introduces a derivation of the different optimisation methods that have been reported in the literature. Major theoretical properties of the new methods have been presented and implemented. Here we present detailed description of the most essential steps of the implementation. The performance of the developed methods is evaluated against real-world benchmark problems, and the numerical results of the test problems are found to be competitive compared to existing methods

    Modelling and solution methods for portfolio optimisation

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 16/01/2004.In this thesis modelling and solution methods for portfolio optimisation are presented. The investigations reported in this thesis extend the Markowitz mean-variance model to the domain of quadratic mixed integer programming (QMIP) models which are 'NP-hard' discrete optimisation problems. In addition to the modelling extensions a number of challenging aspects of solution algorithms are considered. The relative performances of sparse simplex (SSX) as well as the interior point method (IPM) are studied in detail. In particular, the roles of 'warmstart' and dual simplex are highlighted as applied to the construction of the efficient frontier which requires processing a family of problems; that is, the portfolio planning model stated in a parametric form. The method of solving QMIP models using the branch and bound algorithm is first developed; this is followed up by heuristics which improve the performance of the (discrete) solution algorithm. Some properties of the efficient frontier with discrete constraints are considered and a method of computing the discrete efficient frontier (DEF) efficiently is proposed. The computational investigation considers the efficiency and effectiveness in respect of the scale up properties of the proposed algorithm. The extensions of the real world models and the proposed solution algorithms make contribution as new knowledge

    On discretisation drift and smoothness regularisation in neural network training

    Full text link
    The deep learning recipe of casting real-world problems as mathematical optimisation and tackling the optimisation by training deep neural networks using gradient-based optimisation has undoubtedly proven to be a fruitful one. The understanding behind why deep learning works, however, has lagged behind its practical significance. We aim to make steps towards an improved understanding of deep learning with a focus on optimisation and model regularisation. We start by investigating gradient descent (GD), a discrete-time algorithm at the basis of most popular deep learning optimisation algorithms. Understanding the dynamics of GD has been hindered by the presence of discretisation drift, the numerical integration error between GD and its often studied continuous-time counterpart, the negative gradient flow (NGF). To add to the toolkit available to study GD, we derive novel continuous-time flows that account for discretisation drift. Unlike the NGF, these new flows can be used to describe learning rate specific behaviours of GD, such as training instabilities observed in supervised learning and two-player games. We then translate insights from continuous time into mitigation strategies for unstable GD dynamics, by constructing novel learning rate schedules and regularisers that do not require additional hyperparameters. Like optimisation, smoothness regularisation is another pillar of deep learning's success with wide use in supervised learning and generative modelling. Despite their individual significance, the interactions between smoothness regularisation and optimisation have yet to be explored. We find that smoothness regularisation affects optimisation across multiple deep learning domains, and that incorporating smoothness regularisation in reinforcement learning leads to a performance boost that can be recovered using adaptions to optimisation methods.Comment: PhD thesis. arXiv admin note: text overlap with arXiv:2302.0195

    On discretisation drift and smoothness regularisation in neural network training

    Get PDF
    The deep learning recipe of casting real-world problems as mathematical optimisation and tackling the optimisation by training deep neural networks using gradient-based optimisation has undoubtedly proven to be a fruitful one. The understanding behind why deep learning works, however, has lagged behind its practical significance. We aim to make steps towards an improved understanding of deep learning with a focus on optimisation and model regularisation. We start by investigating gradient descent (GD), a discrete-time algorithm at the basis of most popular deep learning optimisation algorithms. Understanding the dynamics of GD has been hindered by the presence of discretisation drift, the numerical integration error between GD and its often studied continuous-time counterpart, the negative gradient flow (NGF). To add to the toolkit available to study GD, we derive novel continuous-time flows that account for discretisation drift. Unlike the NGF, these new flows can be used to describe learning rate specific behaviours of GD, such as training instabilities observed in supervised learning and two-player games. We then translate insights from continuous time into mitigation strategies for unstable GD dynamics, by constructing novel learning rate schedules and regularisers that do not require additional hyperparameters. Like optimisation, smoothness regularisation is another pillar of deep learning's success with wide use in supervised learning and generative modelling. Despite their individual significance, the interactions between smoothness regularisation and optimisation have yet to be explored. We find that smoothness regularisation affects optimisation across multiple deep learning domains, and that incorporating smoothness regularisation in reinforcement learning leads to a performance boost that can be recovered using adaptions to optimisation methods
    corecore