390 research outputs found

    Discrete maximal regularity of time-stepping schemes for fractional evolution equations

    Get PDF
    In this work, we establish the maximal ℓp\ell^p-regularity for several time stepping schemes for a fractional evolution model, which involves a fractional derivative of order α∈(0,2)\alpha\in(0,2), α≠1\alpha\neq 1, in time. These schemes include convolution quadratures generated by backward Euler method and second-order backward difference formula, the L1 scheme, explicit Euler method and a fractional variant of the Crank-Nicolson method. The main tools for the analysis include operator-valued Fourier multiplier theorem due to Weis [48] and its discrete analogue due to Blunck [10]. These results generalize the corresponding results for parabolic problems

    Numerical analysis of nonlinear subdiffusion equations

    Get PDF
    We present a general framework for the rigorous numerical analysis of time-fractional nonlinear parabolic partial differential equations, with a fractional derivative of order α∈(0,1)\alpha\in(0,1) in time. The framework relies on three technical tools: a fractional version of the discrete Gr\"onwall-type inequality, discrete maximal regularity, and regularity theory of nonlinear equations. We establish a general criterion for showing the fractional discrete Gr\"onwall inequality, and verify it for the L1 scheme and convolution quadrature generated by BDFs. Further, we provide a complete solution theory, e.g., existence, uniqueness and regularity, for a time-fractional diffusion equation with a Lipschitz nonlinear source term. Together with the known results of discrete maximal regularity, we derive pointwise L2(Ω)L^2(\Omega) norm error estimates for semidiscrete Galerkin finite element solutions and fully discrete solutions, which are of order O(h2)O(h^2) (up to a logarithmic factor) and O(τα)O(\tau^\alpha), respectively, without any extra regularity assumption on the solution or compatibility condition on the problem data. The sharpness of the convergence rates is supported by the numerical experiments

    Maximal l(p)-regularity of multiterm fractional equations with delay

    Full text link
    [EN] We provide a characterization for the existence and uniqueness of solutions in the space of vector-valued sequences l(p) (Z, X)for the multiterm fractional delayed model in the form Delta(alpha)u(n) + lambda Delta(beta)u(n) = Lambda u(n) + u(n-tau) + f(n), n is an element of Z, alpha, beta is an element of R+, tau is an element of Z, lambda is an element of R, where X is a Banach space, A is a closed linear operator with domain D(A) defined on X, f is an element of l(p)(Z,X) and Delta(Gamma) denotes the Grunwald-Letkinov fractional derivative of order Gamma > 0. We also give some conditions to ensure the existence of solutions when adding nonlinearities. Finally, we illustrate our results with an example given by a general abstract nonlinear model that includes the fractional Fisher equation with delay.The second author was supported by MEC, MTM2016-75963-P and PID2019-105011GB-I00 and GVA/2018/110.Girona, I.; Murillo Arcila, M. (2021). Maximal l(p)-regularity of multiterm fractional equations with delay. Mathematical Methods in the Applied Sciences. 44(1):853-864. https://doi.org/10.1002/mma.6792S85386444

    Space-time Methods for Time-dependent Partial Differential Equations

    Get PDF
    Modern discretizations of time-dependent PDEs consider the full problem in the space-time cylinder and aim to overcome limitations of classical approaches such as the method of lines (first discretize in space and then solve the resulting ODE) and the Rothe method (first discretize in time and then solve the PDE). A main advantage of a holistic space-time method is the direct access to space-time adaptivity and to the backward problem (required for the dual problem in optimization or error control). Moreover, this allows for parallel solution strategies simultaneously in time and space. Several space-time concepts where proposed (different conforming and nonconforming space-time finite elements, the parareal method, wavefront relaxation etc.) but this topic has become a rapidly growing field in numerical analysis and scientific computing. In this workshop the focus is the development of adaptive and flexible space-time discretization methods for solving parabolic and hyperbolic space-time partial differential equations

    Nonlocal operators are chaotic

    Full text link
    [EN] We characterize for the first time the chaotic behavior of nonlocal operators that come from a broad class of time-stepping schemes of approximation for fractional differential operators. For that purpose, we use criteria for chaos of Toeplitz operators in Lebesgue spaces of sequences. Surprisingly, this characterization is proved to be-in some cases-dependent of the fractional order of the operator and the step size of the scheme.C. Lizama is partially supported by FONDECYT (Grant No. 1180041) and DICYT, Universidad de Santiago de Chile, USACH. M. Murillo-Arcila is supported by MICINN and FEDER, Projects MTM2016-75963-P and PID2019-105011GB-I00, and by Generalitat Valenciana, Project GVA/2018/110. A. Peris is supported by MICINN and FEDER, Projects MTM2016-75963-P and PID2019-105011GB-I00, and by Generalitat Valenciana, Project PROMETEO/2017/102.Lizama, C.; Murillo Arcila, M.; Peris Manguillot, A. (2020). Nonlocal operators are chaotic. Chaos An Interdisciplinary Journal of Nonlinear Science. 30(10):1-8. https://doi.org/10.1063/5.0018408183010Abadias, L., & Miana, P. J. (2018). Generalized CesĂ ro operators, fractional finite differences and Gamma functions. Journal of Functional Analysis, 274(5), 1424-1465. doi:10.1016/j.jfa.2017.10.010Atici, F. M., & Eloe, P. (2009). Discrete fractional calculus with the nabla operator. Electronic Journal of Qualitative Theory of Differential Equations, (3), 1-12. doi:10.14232/ejqtde.2009.4.3Atıcı, F. M., & Eloe, P. W. (2011). Two-point boundary value problems for finite fractional difference equations. Journal of Difference Equations and Applications, 17(4), 445-456. doi:10.1080/10236190903029241Atici, F. M., & Eloe, P. W. (2008). Initial value problems in discrete fractional calculus. Proceedings of the American Mathematical Society, 137(03), 981-989. doi:10.1090/s0002-9939-08-09626-3Atıcı, F. M., & ƞengĂŒl, S. (2010). Modeling with fractional difference equations. Journal of Mathematical Analysis and Applications, 369(1), 1-9. doi:10.1016/j.jmaa.2010.02.009Banks, J., Brooks, J., Cairns, G., Davis, G., & Stacey, P. (1992). On Devaney’s Definition of Chaos. The American Mathematical Monthly, 99(4), 332-334. doi:10.1080/00029890.1992.11995856Baranov, A., & Lishanskii, A. (2016). Hypercyclic Toeplitz Operators. Results in Mathematics, 70(3-4), 337-347. doi:10.1007/s00025-016-0527-xBayart, F., & Matheron, E. (2009). Dynamics of Linear Operators. doi:10.1017/cbo9780511581113DELAUBENFELS, R., & EMAMIRAD, H. (2001). Chaos for functions of discrete and continuous weighted shift operators. Ergodic Theory and Dynamical Systems, 21(05). doi:10.1017/s0143385701001675Edelman, M. (2014). Caputo standard α-family of maps: Fractional difference vs. fractional. Chaos: An Interdisciplinary Journal of Nonlinear Science, 24(2), 023137. doi:10.1063/1.4885536Edelman, M. (2015). On the fractional Eulerian numbers and equivalence of maps with long term power-law memory (integral Volterra equations of the second kind) to GrĂŒnvald-Letnikov fractional difference (differential) equations. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(7), 073103. doi:10.1063/1.4922834Edelman, M. (2015). Fractional Maps and Fractional Attractors. Part II: Fractional Difference Caputo α- Families of Maps. The interdisciplinary journal of Discontinuity, Nonlinearity, and Complexity, 4(4), 391-402. doi:10.5890/dnc.2015.11.003Erbe, L., Goodrich, C. S., Jia, B., & Peterson, A. (2016). Survey of the qualitative properties of fractional difference operators: monotonicity, convexity, and asymptotic behavior of solutions. Advances in Difference Equations, 2016(1). doi:10.1186/s13662-016-0760-3Ferreira, R. A. C. (2012). A discrete fractional Gronwall inequality. Proceedings of the American Mathematical Society, 140(5), 1605-1612. doi:10.1090/s0002-9939-2012-11533-3Ferreira, R. A. C. (2013). Existence and uniqueness of solution to some discrete fractional boundary value problems of order less than one. Journal of Difference Equations and Applications, 19(5), 712-718. doi:10.1080/10236198.2012.682577Goodrich, C., & Peterson, A. C. (2015). Discrete Fractional Calculus. doi:10.1007/978-3-319-25562-0Goodrich, C. S. (2012). On discrete sequential fractional boundary value problems. Journal of Mathematical Analysis and Applications, 385(1), 111-124. doi:10.1016/j.jmaa.2011.06.022Goodrich, C. S. (2014). A convexity result for fractional differences. Applied Mathematics Letters, 35, 58-62. doi:10.1016/j.aml.2014.04.013Goodrich, C., & Lizama, C. (2020). A transference principle for nonlocal operators using a convolutional approach: fractional monotonicity and convexity. Israel Journal of Mathematics, 236(2), 533-589. doi:10.1007/s11856-020-1991-2Gray, H. L., & Zhang, N. F. (1988). On a new definition of the fractional difference. Mathematics of Computation, 50(182), 513-529. doi:10.1090/s0025-5718-1988-0929549-2Li, K., Peng, J., & Jia, J. (2012). Cauchy problems for fractional differential equations with Riemann–Liouville fractional derivatives. Journal of Functional Analysis, 263(2), 476-510. doi:10.1016/j.jfa.2012.04.011Lizama, C. (2017). The Poisson distribution, abstract fractional difference equations, and stability. Proceedings of the American Mathematical Society, 145(9), 3809-3827. doi:10.1090/proc/12895Lizama, C. (2015). lp-maximal regularity for fractional difference equations on UMD spaces. Mathematische Nachrichten, 288(17-18), 2079-2092. doi:10.1002/mana.201400326Lizama, C., & Murillo-Arcila, M. (2020). Discrete maximal regularity for volterra equations and nonlocal time-stepping schemes. Discrete & Continuous Dynamical Systems - A, 40(1), 509-528. doi:10.3934/dcds.2020020MartĂ­nez-GimĂ©nez, F. (2007). Chaos for power series of backward shift operators. Proceedings of the American Mathematical Society, 135(6), 1741-1752. doi:10.1090/s0002-9939-07-08658-3Radwan, A. G., AbdElHaleem, S. H., & Abd-El-Hafiz, S. K. (2016). Symmetric encryption algorithms using chaotic and non-chaotic generators: A review. Journal of Advanced Research, 7(2), 193-208. doi:10.1016/j.jare.2015.07.002Radwan, A. G., Moaddy, K., Salama, K. N., Momani, S., & Hashim, I. (2014). Control and switching synchronization of fractional order chaotic systems using active control technique. Journal of Advanced Research, 5(1), 125-132. doi:10.1016/j.jare.2013.01.003Wu, G.-C., & Baleanu, D. (2013). Discrete fractional logistic map and its chaos. Nonlinear Dynamics, 75(1-2), 283-287. doi:10.1007/s11071-013-1065-7Wu, G.-C., Baleanu, D., & Zeng, S.-D. (2014). Discrete chaos in fractional sine and standard maps. Physics Letters A, 378(5-6), 484-487. doi:10.1016/j.physleta.2013.12.01
    • 

    corecore