41,197 research outputs found

    Fast Discrete Consensus Based on Gossip for Makespan Minimization in Networked Systems

    Get PDF
    In this paper we propose a novel algorithm to solve the discrete consensus problem, i.e., the problem of distributing evenly a set of tokens of arbitrary weight among the nodes of a networked system. Tokens are tasks to be executed by the nodes and the proposed distributed algorithm minimizes monotonically the makespan of the assigned tasks. The algorithm is based on gossip-like asynchronous local interactions between the nodes. The convergence time of the proposed algorithm is superior with respect to the state of the art of discrete and quantized consensus by at least a factor O(n) in both theoretical and empirical comparisons

    Locally Optimal Load Balancing

    Full text link
    This work studies distributed algorithms for locally optimal load-balancing: We are given a graph of maximum degree Δ\Delta, and each node has up to LL units of load. The task is to distribute the load more evenly so that the loads of adjacent nodes differ by at most 11. If the graph is a path (Δ=2\Delta = 2), it is easy to solve the fractional version of the problem in O(L)O(L) communication rounds, independently of the number of nodes. We show that this is tight, and we show that it is possible to solve also the discrete version of the problem in O(L)O(L) rounds in paths. For the general case (Δ>2\Delta > 2), we show that fractional load balancing can be solved in poly(L,Δ)\operatorname{poly}(L,\Delta) rounds and discrete load balancing in f(L,Δ)f(L,\Delta) rounds for some function ff, independently of the number of nodes.Comment: 19 pages, 11 figure

    Quasirandom Load Balancing

    Full text link
    We propose a simple distributed algorithm for balancing indivisible tokens on graphs. The algorithm is completely deterministic, though it tries to imitate (and enhance) a random algorithm by keeping the accumulated rounding errors as small as possible. Our new algorithm surprisingly closely approximates the idealized process (where the tokens are divisible) on important network topologies. On d-dimensional torus graphs with n nodes it deviates from the idealized process only by an additive constant. In contrast to that, the randomized rounding approach of Friedrich and Sauerwald (2009) can deviate up to Omega(polylog(n)) and the deterministic algorithm of Rabani, Sinclair and Wanka (1998) has a deviation of Omega(n^{1/d}). This makes our quasirandom algorithm the first known algorithm for this setting which is optimal both in time and achieved smoothness. We further show that also on the hypercube our algorithm has a smaller deviation from the idealized process than the previous algorithms.Comment: 25 page

    Improved Analysis of Deterministic Load-Balancing Schemes

    Full text link
    We consider the problem of deterministic load balancing of tokens in the discrete model. A set of nn processors is connected into a dd-regular undirected network. In every time step, each processor exchanges some of its tokens with each of its neighbors in the network. The goal is to minimize the discrepancy between the number of tokens on the most-loaded and the least-loaded processor as quickly as possible. Rabani et al. (1998) present a general technique for the analysis of a wide class of discrete load balancing algorithms. Their approach is to characterize the deviation between the actual loads of a discrete balancing algorithm with the distribution generated by a related Markov chain. The Markov chain can also be regarded as the underlying model of a continuous diffusion algorithm. Rabani et al. showed that after time T=O(log(Kn)/μ)T = O(\log (Kn)/\mu), any algorithm of their class achieves a discrepancy of O(dlogn/μ)O(d\log n/\mu), where μ\mu is the spectral gap of the transition matrix of the graph, and KK is the initial load discrepancy in the system. In this work we identify some natural additional conditions on deterministic balancing algorithms, resulting in a class of algorithms reaching a smaller discrepancy. This class contains well-known algorithms, eg., the Rotor-Router. Specifically, we introduce the notion of cumulatively fair load-balancing algorithms where in any interval of consecutive time steps, the total number of tokens sent out over an edge by a node is the same (up to constants) for all adjacent edges. We prove that algorithms which are cumulatively fair and where every node retains a sufficient part of its load in each step, achieve a discrepancy of O(min{dlogn/μ,dn})O(\min\{d\sqrt{\log n/\mu},d\sqrt{n}\}) in time O(T)O(T). We also show that in general neither of these assumptions may be omitted without increasing discrepancy. We then show by a combinatorial potential reduction argument that any cumulatively fair scheme satisfying some additional assumptions achieves a discrepancy of O(d)O(d) almost as quickly as the continuous diffusion process. This positive result applies to some of the simplest and most natural discrete load balancing schemes.Comment: minor corrections; updated literature overvie

    Tight Bounds for Randomized Load Balancing on Arbitrary Network Topologies

    Full text link
    We consider the problem of balancing load items (tokens) in networks. Starting with an arbitrary load distribution, we allow nodes to exchange tokens with their neighbors in each round. The goal is to achieve a distribution where all nodes have nearly the same number of tokens. For the continuous case where tokens are arbitrarily divisible, most load balancing schemes correspond to Markov chains, whose convergence is fairly well-understood in terms of their spectral gap. However, in many applications, load items cannot be divided arbitrarily, and we need to deal with the discrete case where the load is composed of indivisible tokens. This discretization entails a non-linear behavior due to its rounding errors, which makes this analysis much harder than in the continuous case. We investigate several randomized protocols for different communication models in the discrete case. As our main result, we prove that for any regular network in the matching model, all nodes have the same load up to an additive constant in (asymptotically) the same number of rounds as required in the continuous case. This generalizes and tightens the previous best result, which only holds for expander graphs, and demonstrates that there is almost no difference between the discrete and continuous cases. Our results also provide a positive answer to the question of how well discrete load balancing can be approximated by (continuous) Markov chains, which has been posed by many researchers.Comment: 74 pages, 4 figure

    Balancing sums of random vectors

    Full text link
    We study a higher-dimensional 'balls-into-bins' problem. An infinite sequence of i.i.d. random vectors is revealed to us one vector at a time, and we are required to partition these vectors into a fixed number of bins in such a way as to keep the sums of the vectors in the different bins close together; how close can we keep these sums almost surely? This question, our primary focus in this paper, is closely related to the classical problem of partitioning a sequence of vectors into balanced subsequences, in addition to having applications to some problems in computer science.Comment: 17 pages, Discrete Analysi

    Lock-in Problem for Parallel Rotor-router Walks

    Get PDF
    The rotor-router model, also called the Propp machine, was introduced as a deterministic alternative to the random walk. In this model, a group of identical tokens are initially placed at nodes of the graph. Each node maintains a cyclic ordering of the outgoing arcs, and during consecutive turns the tokens are propagated along arcs chosen according to this ordering in round-robin fashion. The behavior of the model is fully deterministic. Yanovski et al.(2003) proved that a single rotor-router walk on any graph with m edges and diameter DD stabilizes to a traversal of an Eulerian circuit on the set of all 2m directed arcs on the edge set of the graph, and that such periodic behaviour of the system is achieved after an initial transient phase of at most 2mD steps. The case of multiple parallel rotor-routers was studied experimentally, leading Yanovski et al. to the conjecture that a system of k \textgreater{} 1 parallel walks also stabilizes with a period of length at most 2m2m steps. In this work we disprove this conjecture, showing that the period of parallel rotor-router walks can in fact, be superpolynomial in the size of graph. On the positive side, we provide a characterization of the periodic behavior of parallel router walks, in terms of a structural property of stable states called a subcycle decomposition. This property provides us the tools to efficiently detect whether a given system configuration corresponds to the transient or to the limit behavior of the system. Moreover, we provide polynomial upper bounds of O(m4D2+mDlogk)O(m^4 D^2 + mD \log k) and O(m5k2)O(m^5 k^2) on the number of steps it takes for the system to stabilize. Thus, we are able to predict any future behavior of the system using an algorithm that takes polynomial time and space. In addition, we show that there exists a separation between the stabilization time of the single-walk and multiple-walk rotor-router systems, and that for some graphs the latter can be asymptotically larger even for the case of k=2k = 2 walks
    corecore