1,204 research outputs found

    Generalized Debye Sources Based EFIE Solver on Subdivision Surfaces

    Get PDF
    The electric field integral equation is a well known workhorse for obtaining fields scattered by a perfect electric conducting (PEC) object. As a result, the nuances and challenges of solving this equation have been examined for a while. Two recent papers motivate the effort presented in this paper. Unlike traditional work that uses equivalent currents defined on surfaces, recent research proposes a technique that results in well conditioned systems by employing generalized Debye sources (GDS) as unknowns. In a complementary effort, some of us developed a method that exploits the same representation for both the geometry (subdivision surface representations) and functions defined on the geometry, also known as isogeometric analysis (IGA). The challenge in generalizing GDS method to a discretized geometry is the complexity of the intermediate operators. However, thanks to our earlier work on subdivision surfaces, the additional smoothness of geometric representation permits discretizing these intermediate operations. In this paper, we employ both ideas to present a well conditioned GDS-EFIE. Here, the intermediate surface Laplacian is well discretized by using subdivision basis. Likewise, using subdivision basis to represent the sources, results in an efficient and accurate IGA framework. Numerous results are presented to demonstrate the efficacy of the approach

    Steklov Spectral Geometry for Extrinsic Shape Analysis

    Full text link
    We propose using the Dirichlet-to-Neumann operator as an extrinsic alternative to the Laplacian for spectral geometry processing and shape analysis. Intrinsic approaches, usually based on the Laplace-Beltrami operator, cannot capture the spatial embedding of a shape up to rigid motion, and many previous extrinsic methods lack theoretical justification. Instead, we consider the Steklov eigenvalue problem, computing the spectrum of the Dirichlet-to-Neumann operator of a surface bounding a volume. A remarkable property of this operator is that it completely encodes volumetric geometry. We use the boundary element method (BEM) to discretize the operator, accelerated by hierarchical numerical schemes and preconditioning; this pipeline allows us to solve eigenvalue and linear problems on large-scale meshes despite the density of the Dirichlet-to-Neumann discretization. We further demonstrate that our operators naturally fit into existing frameworks for geometry processing, making a shift from intrinsic to extrinsic geometry as simple as substituting the Laplace-Beltrami operator with the Dirichlet-to-Neumann operator.Comment: Additional experiments adde
    • …
    corecore