3,027 research outputs found

    Lot Streaming in Different Types of Production Processes: A PRISMA Systematic Review

    Get PDF
    At present, any industry that wanted to be considered a vanguard must be willing to improve itself, developing innovative techniques to generate a competitive advantage against its direct competitors. Hence, many methods are employed to optimize production processes, such as Lot Streaming, which consists of partitioning the productive lots into overlapping small batches to reduce the overall operating times known as Makespan, reducing the delivery time to the final customer. This work proposes carrying out a systematic review following the PRISMA methodology to the existing literature in indexed databases that demonstrates the application of Lot Streaming in the different production systems, giving the scientific community a strong consultation tool, useful to validate the different important elements in the definition of the Makespan reduction objectives and their applicability in the industry. Two hundred papers were identified on the subject of this study. After applying a group of eligibility criteria, 63 articles were analyzed, concluding that Lot Streaming can be applied in different types of industrial processes, always keeping the main objective of reducing Makespan, becoming an excellent improvement tool, thanks to the use of different optimization algorithms, attached to the reality of each industry.This work was supported by the Universidad Tecnica de Ambato (UTA) and their Research and Development Department (DIDE) under project CONIN-P-256-2019, and SENESCYT by grants “Convocatoria Abierta 2011” and “Convocatoria Abierta 2013”

    A Hybrid Bacterial Swarming Methodology for Job Shop Scheduling Environment

    Get PDF
    Optimized utilization of resources is the need of the hour in any manufacturing system. A properly planned schedule is often required to facilitate optimization. This makes scheduling a significant phase in any manufacturing scenario. The Job Shop Scheduling Problem is an operation sequencing problem on multiple machines with some operation and machine precedence constraints, aimed to find the best sequence of operations on each machine in order to optimize a set of objectives. Bacterial Foraging algorithm is a relatively new biologically inspired optimization technique proposed based on the foraging behaviour of E.coli bacteria. Harmony Search is a phenomenon mimicking algorithm devised by the improvisation process of musicians. In this research paper, Harmony Search is hybridized with bacterial foraging to improve its scheduling strategies. A proposed Harmony Bacterial Swarming Algorithm is developed and tested with benchmark Job Shop instances. Computational results have clearly shown the competence of our method in obtaining the best schedule

    Application of an evolutionary algorithm-based ensemble model to job-shop scheduling

    Get PDF
    In this paper, a novel evolutionary algorithm is applied to tackle job-shop scheduling tasks in manufacturing environments. Specifically, a modified micro genetic algorithm (MmGA) is used as the building block to formulate an ensemble model to undertake multi-objective optimisation problems in job-shop scheduling. The MmGA ensemble is able to approximate the optimal solution under the Pareto optimality principle. To evaluate the effectiveness of the MmGA ensemble, a case study based on real requirements is conducted. The results positively indicate the effectiveness of the MmGA ensemble in undertaking job-shop scheduling problems

    Solving no-wait two-stage flexible flow shop scheduling problem with unrelated parallel machines and rework time by the adjusted discrete Multi Objective Invasive Weed Optimization and fuzzy dominance approach

    Get PDF
    Purpose: Adjusted discrete Multi-Objective Invasive Weed Optimization (DMOIWO) algorithm, which uses fuzzy dominant approach for ordering, has been proposed to solve No-wait two-stage flexible flow shop scheduling problem. Design/methodology/approach: No-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times and probable rework in both stations, different ready times for all jobs and rework times for both stations as well as unrelated parallel machines with regards to the simultaneous minimization of maximum job completion time and average latency functions have been investigated in a multi-objective manner. In this study, the parameter setting has been carried out using Taguchi Method based on the quality indicator for beater performance of the algorithm. Findings: The results of this algorithm have been compared with those of conventional, multi-objective algorithms to show the better performance of the proposed algorithm. The results clearly indicated the greater performance of the proposed algorithm. Originality/value: This study provides an efficient method for solving multi objective no-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times, probable rework in both stations, different ready times for all jobs, rework times for both stations and unrelated parallel machines which are the real constraints.Peer Reviewe

    INTEGRATED APPROACH OF SCHEDULING A FLEXIBLE JOB SHOP USING ENHANCED FIREFLY AND HYBRID FLOWER POLLINATION ALGORITHMS

    Get PDF
    Manufacturing industries are undergoing tremendous transformation due to Industry 4.0. Flexibility, consumer demands, product customization, high product quality, and reduced delivery times are mandatory for the survival of a manufacturing plant, for which scheduling plays a major role. A job shop problem modified with flexibility is called flexible job shop scheduling. It is an integral part of smart manufacturing. This study aims to optimize scheduling using an integrated approach, where assigning machines and their routing are concurrently performed. Two hybrid methods have been proposed: 1) The Hybrid Adaptive Firefly Algorithm (HAdFA) and 2) Hybrid Flower Pollination Algorithm (HFPA). To address the premature convergence problem inherent in the classic firefly algorithm, the proposed HAdFA employs two novel adaptive strategies: employing an adaptive randomization parameter (α), which dynamically modifies at each step, and Gray relational analysis updates firefly at each step, thereby maintaining a balance between diversification and intensification. HFPA is inspired by the pollination strategy of flowers. Additionally, both HAdFA and HFPA are incorporated with a local search technique of enhanced simulated annealing to accelerate the algorithm and prevent local optima entrapment. Tests on standard benchmark cases have been performed to demonstrate the proposed algorithm’s efficacy. The proposed HAdFA surpasses the performance of the HFPA and other metaheuristics found in the literature. A case study was conducted to further authenticate the efficiency of our algorithm. Our algorithm significantly improves convergence speed and enables the exploration of a large number of rich optimal solutions.

    Algorithms and Methods for Designing and Scheduling Smart Manufacturing Systems

    Get PDF
    This book, as a Special Issue, is a collection of some of the latest advancements in designing and scheduling smart manufacturing systems. The smart manufacturing concept is undoubtedly considered a paradigm shift in manufacturing technology. This conception is part of the Industry 4.0 strategy, or equivalent national policies, and brings new challenges and opportunities for the companies that are facing tough global competition. Industry 4.0 should not only be perceived as one of many possible strategies for manufacturing companies, but also as an important practice within organizations. The main focus of Industry 4.0 implementation is to combine production, information technology, and the internet. The presented Special Issue consists of ten research papers presenting the latest works in the field. The papers include various topics, which can be divided into three categories—(i) designing and scheduling manufacturing systems (seven articles), (ii) machining process optimization (two articles), (iii) digital insurance platforms (one article). Most of the mentioned research problems are solved in these articles by using genetic algorithms, the harmony search algorithm, the hybrid bat algorithm, the combined whale optimization algorithm, and other optimization and decision-making methods. The above-mentioned groups of articles are briefly described in this order in this book

    HYBRID GENETIC AND PENGUIN SEARCH OPTIMIZATION ALGORITHM (GA-PSEOA) FOR EFFICIENT FLOW SHOP SCHEDULING SOLUTIONS

    Get PDF
    This paper presents a novel hybrid approach, fusing genetic algorithms (GA) and penguin search optimization (PSeOA), to address the flow shop scheduling problem (FSSP). GA utilizes selection, crossover, and mutation inspired by natural selection, while PSeOA emulates penguin foraging behavior for efficient exploration. The approach integrates GA's genetic diversity and solution space exploration with PSeOA's rapid convergence, further improved with FSSP-specific modifications. Extensive experiments validate its efficacy, outperforming pure GA, PSeOA, and other metaheuristics

    Comparison of new metaheuristics, for the solution of an integrated jobs-maintenance scheduling problem

    Get PDF
    This paper presents and compares new metaheuristics to solve an integrated jobs-maintenance scheduling problem, on a single machine subjected to aging and failures. The problem, introduced by Zammori et al. (2014), was originally solved using the Modified Harmony Search (MHS) metaheuristic. However, an extensive numerical analysis brought to light some structural limits of the MHS, as the analysis revealed that the MHS is outperformed by the simpler Simulated Annealing by Ishibuchi et al. (1995). Aiming to solve the problem in a more effective way, we integrated the MHS with local minima escaping procedures and we also developed a new Cuckoo Search metaheuristic, based on an innovative Levy Flight. A thorough comparison confirmed the superiority of the newly developed Cuckoo Search, which is capable to find better solutions in a smaller amount of time. This an important result, both for academics and practitioners, since the integrated job-maintenance scheduling problem has a high operational relevance, but it is known to be extremely hard to be solved, especially in a reasonable amount of time. Also, the developed Cuckoo Search has been designed in an extremely flexible way and it can be easily readapted and applied to a wide range of combinatorial problems. (C) 2018 Elsevier Ltd. All rights reserved
    corecore