3,430 research outputs found

    Swarming Reconnaissance Using Unmanned Aerial Vehicles in a Parallel Discrete Event Simulation

    Get PDF
    Current military affairs indicate that future military warfare requires safer, more accurate, and more fault-tolerant weapons systems. Unmanned Aerial Vehicles (UAV) are one answer to this military requirement. Technology in the UAV arena is moving toward smaller and more capable systems and is becoming available at a fraction of the cost. Exploiting the advances in these miniaturized flying vehicles is the aim of this research. How are the UAVs employed for the future military? The concept of operations for a micro-UAV system is adopted from nature from the appearance of flocking birds, movement of a school of fish, and swarming bees among others. All of these natural phenomena have a common thread: a global action resulting from many small individual actions. This emergent behavior is the aggregate result of many simple interactions occurring within the flock, school, or swarm. In a similar manner, a more robust weapon system uses emergent behavior resulting in no weakest link because the system itself is made up of simple interactions by hundreds or thousands of homogeneous UAVs. The global system in this research is referred to as a swarm. Losing one or a few individual unmanned vehicles would not dramatically impact the swarms ability to complete the mission or cause harm to any human operator. Swarming reconnaissance is the emergent behavior of swarms to perform a reconnaissance operation. An in-depth look at the design of a reconnaissance swarming mission is studied. A taxonomy of passive reconnaissance applications is developed to address feasibility. Evaluation of algorithms for swarm movement, communication, sensor input/analysis, targeting, and network topology result in priorities of each model\u27s desired features. After a thorough selection process of available implementations, a subset of those models are integrated and built upon resulting in a simulation that explores the innovations of swarming UAVs

    Sensor actor network modeling utilizing the holonic architectural framework

    Full text link
    This paper discusses the results of utilizing advanced EKM modeling techniques to manage Sensor-Actor networks (SANETs) based upon the Holonic Architectural Framework. EKMs allow a quantitative analysis of an algorithmic artificial neural network process by using an indirect-mapping EKM to self-organize from a given input space to administer SANET routing and clustering functions with a control parameter space. Results demonstrate that in comparison to linear approximation techniques, indirect mapping with EKMs provide fluid control and feedback mechanisms by operating in a continuous sensory control space-thus enabling interactive detection and optimization of events in real-time environments

    A Genetic Algorithm for UAV Routing Integrated with a Parallel Swarm Simulation

    Get PDF
    This research investigation addresses the problem of routing and simulating swarms of UAVs. Sorties are modeled as instantiations of the NP-Complete Vehicle Routing Problem, and this work uses genetic algorithms (GAs) to provide a fast and robust algorithm for a priori and dynamic routing applications. Swarms of UAVs are modeled based on extensions of Reynolds\u27 swarm research and are simulated on a Beowulf cluster as a parallel computing application using the Synchronous Environment for Emulation and Discrete Event Simulation (SPEEDES). In a test suite, standard measures such as benchmark problems, best published results, and parallel metrics are used as performance measures. The GA consistently provides efficient and effective results for a variety of VRP benchmarks. Analysis of the solution quality over time verifies that the GA exponentially improves solution quality and is robust to changing search landscapes - making it an ideal tool for employment in UAV routing applications. Parallel computing metrics calculated from the results of a PDES show that consistent speedup (almost linear in many cases) can be obtained using SPEEDES as the communication library for this UAV routing application. Results from the routing application and parallel simulation are synthesized to produce a more advanced model for routing UAVs

    Cellular Automata Applications in Shortest Path Problem

    Full text link
    Cellular Automata (CAs) are computational models that can capture the essential features of systems in which global behavior emerges from the collective effect of simple components, which interact locally. During the last decades, CAs have been extensively used for mimicking several natural processes and systems to find fine solutions in many complex hard to solve computer science and engineering problems. Among them, the shortest path problem is one of the most pronounced and highly studied problems that scientists have been trying to tackle by using a plethora of methodologies and even unconventional approaches. The proposed solutions are mainly justified by their ability to provide a correct solution in a better time complexity than the renowned Dijkstra's algorithm. Although there is a wide variety regarding the algorithmic complexity of the algorithms suggested, spanning from simplistic graph traversal algorithms to complex nature inspired and bio-mimicking algorithms, in this chapter we focus on the successful application of CAs to shortest path problem as found in various diverse disciplines like computer science, swarm robotics, computer networks, decision science and biomimicking of biological organisms' behaviour. In particular, an introduction on the first CA-based algorithm tackling the shortest path problem is provided in detail. After the short presentation of shortest path algorithms arriving from the relaxization of the CAs principles, the application of the CA-based shortest path definition on the coordinated motion of swarm robotics is also introduced. Moreover, the CA based application of shortest path finding in computer networks is presented in brief. Finally, a CA that models exactly the behavior of a biological organism, namely the Physarum's behavior, finding the minimum-length path between two points in a labyrinth is given.Comment: To appear in the book: Adamatzky, A (Ed.) Shortest path solvers. From software to wetware. Springer, 201
    • …
    corecore