231 research outputs found

    Efficient Multiband Algorithms for Blind Source Separation

    Get PDF
    The problem of blind separation refers to recovering original signals, called source signals, from the mixed signals, called observation signals, in a reverberant environment. The mixture is a function of a sequence of original speech signals mixed in a reverberant room. The objective is to separate mixed signals to obtain the original signals without degradation and without prior information of the features of the sources. The strategy used to achieve this objective is to use multiple bands that work at a lower rate, have less computational cost and a quicker convergence than the conventional scheme. Our motivation is the competitive results of unequal-passbands scheme applications, in terms of the convergence speed. The objective of this research is to improve unequal-passbands schemes by improving the speed of convergence and reducing the computational cost. The first proposed work is a novel maximally decimated unequal-passbands scheme.This scheme uses multiple bands that make it work at a reduced sampling rate, and low computational cost. An adaptation approach is derived with an adaptation step that improved the convergence speed. The performance of the proposed scheme was measured in different ways. First, the mean square errors of various bands are measured and the results are compared to a maximally decimated equal-passbands scheme, which is currently the best performing method. The results show that the proposed scheme has a faster convergence rate than the maximally decimated equal-passbands scheme. Second, when the scheme is tested for white and coloured inputs using a low number of bands, it does not yield good results; but when the number of bands is increased, the speed of convergence is enhanced. Third, the scheme is tested for quick changes. It is shown that the performance of the proposed scheme is similar to that of the equal-passbands scheme. Fourth, the scheme is also tested in a stationary state. The experimental results confirm the theoretical work. For more challenging scenarios, an unequal-passbands scheme with over-sampled decimation is proposed; the greater number of bands, the more efficient the separation. The results are compared to the currently best performing method. Second, an experimental comparison is made between the proposed multiband scheme and the conventional scheme. The results show that the convergence speed and the signal-to-interference ratio of the proposed scheme are higher than that of the conventional scheme, and the computation cost is lower than that of the conventional scheme

    Statistical Properties and Applications of Empirical Mode Decomposition

    Get PDF
    Signal analysis is key to extracting information buried in noise. The decomposition of signal is a data analysis tool for determining the underlying physical components of a processed data set. However, conventional signal decomposition approaches such as wavelet analysis, Wagner-Ville, and various short-time Fourier spectrograms are inadequate to process real world signals. Moreover, most of the given techniques require \emph{a prior} knowledge of the processed signal, to select the proper decomposition basis, which makes them improper for a wide range of practical applications. Empirical Mode Decomposition (EMD) is a non-parametric and adaptive basis driver that is capable of breaking-down non-linear, non-stationary signals into an intrinsic and finite components called Intrinsic Mode Functions (IMF). In addition, EMD approximates a dyadic filter that isolates high frequency components, e.g. noise, in higher index IMFs. Despite of being widely used in different applications, EMD is an ad hoc solution. The adaptive performance of EMD comes at the expense of formulating a theoretical base. Therefore, numerical analysis is usually adopted in literature to interpret the behavior. This dissertation involves investigating statistical properties of EMD and utilizing the outcome to enhance the performance of signal de-noising and spectrum sensing systems. The novel contributions can be broadly summarized in three categories: a statistical analysis of the probability distributions of the IMFs and a suggestion of Generalized Gaussian distribution (GGD) as a best fit distribution; a de-noising scheme based on a null-hypothesis of IMFs utilizing the unique filter behavior of EMD; and a novel noise estimation approach that is used to shift semi-blind spectrum sensing techniques into fully-blind ones based on the first IMF. These contributions are justified statistically and analytically and include comparison with other state of art techniques

    DNN-Assisted Speech Enhancement Approaches Incorporating Phase Information

    Get PDF
    Speech enhancement is a widely adopted technique that removes the interferences in a corrupted speech to improve the speech quality and intelligibility. Speech enhancement methods can be implemented in either time domain or time-frequency (T-F) domain. Among various proposed methods, the time-frequency domain methods, which synthesize the enhanced speech with the estimated magnitude spectrogram and the noisy phase spectrogram, gain the most popularity in the past few decades. However, this kind of techniques tend to ignore the importance of phase processing. To overcome this problem, the thesis aims to jointly enhance the magnitude and phase spectra by means of the most recent deep neural networks (DNNs). More specifically, three major contributions are presented in this thesis. First, we present new schemes based on the basic Kalman filter (KF) to remove the background noise in the noisy speech in time domain, where the KF acts as joint estimator for both the magnitude and phase spectra of speech. A DNN-augmented basic KF is first proposed, where DNN is applied for estimating key parameters in the KF, namely the linear prediction coefficients (LPCs). By training the DNN with a large database and making use of the powerful learning ability of DNN, the proposed algorithm is able to estimate LPCs from noisy speech more accurately and robustly, leading to an improved performance as compared to traditional KF based approaches in speech enhancement. We further present a high-frequency (HF) component restoration algorithm to extenuate the degradation in the HF regions of the Kalman-filtered speech, in which the DNN-based bandwidth extension is applied to estimate the magnitude of HF component from the low-frequency (LF) counterpart. By incorporating the restoration algorithm, the enhanced speech suffers less distortion in the HF component. Moreover, we propose a hybrid speech enhancement system that exploits DNN for speech reconstruction and Kalman filtering for further denoising. Two separate networks are adopted in the estimation of magnitude spectrogram and LPCs of the clean speech, respectively. The estimated clean magnitude spectrogram is combined with the phase of the noisy speech to reconstruct the estimated clean speech. A KF with the estimated parameters is then utilized to remove the residual noise in the reconstructed speech. The proposed hybrid system takes advantages of both the DNN-based reconstruction and traditional Kalman filtering, and can work reliably in either matched or unmatched acoustic environments. Next, we incorporate the DNN-based parameter estimation scheme in two advanced KFs: subband KF and colored-noise KF. The DNN-augmented subband KF method decomposes the noisy speech into several subbands, and performs Kalman filtering to each subband speech, where the parameters of the KF are estimated by the trained DNN. The final enhanced speech is then obtained by synthesizing the enhanced subband speeches. In the DNN-augmented colored-noise KF system, both clean speech and noise are modelled as autoregressive (AR) processes, whose parameters comprise the LPCs and the driving noise variances. The LPCs are obtained through training a multi-objective DNN, while the driving noise variances are obtained by solving an optimization problem aiming to minimize the difference between the modelled and observed AR spectra of the noisy speech. The colored-noise Kalman filter with DNN-estimated parameters is then applied to the noisy speech for denoising. A post-subtraction technique is adopted to further remove the residual noise in the Kalman-filtered speech. Extensive computer simulations show that the two proposed advanced KF systems achieve significant performance gains when compared to conventional Kalman filter based algorithms as well as recent DNN-based methods under both seen and unseen noise conditions. Finally, we focus on the T-F domain speech enhancement with masking technique, which aims to retain the speech dominant components and suppress the noise dominant parts of the noisy speech. We first derive a new type of mask, namely constrained ratio mask (CRM), to better control the trade-off between speech distortion and residual noise in the enhanced speech. The CRM is estimated with a trained DNN based on the input noisy feature set and is applied to the noisy magnitude spectrogram for denoising. We further extend the CRM to the complex spectrogram estimation, where the enhanced magnitude spectrogram is obtained with the CRM, while the estimated phase spectrogram is reconstructed with the noisy phase spectrogram and the phase derivatives. Performance evaluation reveals our proposed CRM outperforms several traditional masks in terms of objective metrics. Moreover, the enhanced speech resulting from the CRM based complex spectrogram estimation has a better speech quality than that obtained without using phase reconstruction

    Estimation and Modeling Problems in Parametric Audio Coding

    Get PDF

    New time-frequency domain pitch estimation methods for speed signals under low levels of SNR

    Get PDF
    The major objective of this research is to develop novel pitch estimation methods capable of handling speech signals in practical situations where only noise-corrupted speech observations are available. With this objective in mind, the estimation task is carried out in two different approaches. In the first approach, the noisy speech observations are directly employed to develop two new time-frequency domain pitch estimation methods. These methods are based on extracting a pitch-harmonic and finding the corresponding harmonic number required for pitch estimation. Considering that voiced speech is the output of a vocal tract system driven by a sequence of pulses separated by the pitch period, in the second approach, instead of using the noisy speech directly for pitch estimation, an excitation-like signal (ELS) is first generated from the noisy speech or its noise- reduced version. In the first approach, at first, a harmonic cosine autocorrelation (HCAC) model of clean speech in terms of its pitch-harmonics is introduced. In order to extract a pitch-harmonic, we propose an optimization technique based on least-squares fitting of the autocorrelation function (ACF) of the noisy speech to the HCAC model. By exploiting the extracted pitch-harmonic along with the fast Fourier transform (FFT) based power spectrum of noisy speech, we then deduce a harmonic measure and a harmonic-to-noise-power ratio (HNPR) to determine the desired harmonic number of the extracted pitch-harmonic. In the proposed optimization, an initial estimate of the pitch-harmonic is obtained from the maximum peak of the smoothed FFT power spectrum. In addition to the HCAC model, where the cross-product terms of different harmonics are neglected, we derive a compact yet accurate harmonic sinusoidal autocorrelation (HSAC) model for clean speech signal. The new HSAC model is then used in the least-squares model-fitting optimization technique to extract a pitch-harmonic. In the second approach, first, we develop a pitch estimation method by using an excitation-like signal (ELS) generated from the noisy speech. To this end, a technique is based on the principle of homomorphic deconvolution is proposed for extracting the vocal-tract system (VTS) parameters from the noisy speech, which are utilized to perform an inverse-filtering of the noisy speech to produce a residual signal (RS). In order to reduce the effect of noise on the RS, a noise-compensation scheme is introduced in the autocorrelation domain. The noise-compensated ACF of the RS is then employed to generate a squared Hilbert envelope (SHE) as the ELS of the voiced speech. With a view to further overcome the adverse effect of noise on the ELS, a new symmetric normalized magnitude difference function of the ELS is proposed for eventual pitch estimation. Cepstrum has been widely used in speech signal processing but has limited capability of handling noise. One potential solution could be the introduction of a noise reduction block prior to pitch estimation based on the conventional cepstrum, a framework already available in many practical applications, such as mobile communication and hearing aids. Motivated by the advantages of the existing framework and considering the superiority of our ELS to the speech itself in providing clues for pitch information, we develop a cepstrum-based pitch estimation method by using the ELS obtained from the noise-reduced speech. For this purpose, we propose a noise subtraction scheme in frequency domain, which takes into account the possible cross-correlation between speech and noise and has advantages of noise being updated with time and adjusted at each frame. The enhanced speech thus obtained is utilized to extract the vocal-tract system (VTS) parameters via the homomorphic deconvolution technique. A residual signal (RS) is then produced by inverse-filtering the enhanced speech with the extracted VTS parameters. It is found that, unlike the previous ELS-based method, the squared Hilbert envelope (SHE) computed from the RS of the enhanced speech without noise compensation, is sufficient to represent an ELS. Finally, in order to tackle the undesirable effect of noise of the ELS at a very low SNR and overcome the limitation of the conventional cepstrum in handling different types of noises, a time-frequency domain pseudo cepstrum of the ELS of the enhanced speech, incorporating information of both magnitude and phase spectra of the ELS, is proposed for pitch estimation. (Abstract shortened by UMI.

    Advanced automatic mixing tools for music

    Get PDF
    PhDThis thesis presents research on several independent systems that when combined together can generate an automatic sound mix out of an unknown set of multi‐channel inputs. The research explores the possibility of reproducing the mixing decisions of a skilled audio engineer with minimal or no human interaction. The research is restricted to non‐time varying mixes for large room acoustics. This research has applications in dynamic sound music concerts, remote mixing, recording and postproduction as well as live mixing for interactive scenes. Currently, automated mixers are capable of saving a set of static mix scenes that can be loaded for later use, but they lack the ability to adapt to a different room or to a different set of inputs. In other words, they lack the ability to automatically make mixing decisions. The automatic mixer research depicted here distinguishes between the engineering mixing and the subjective mixing contributions. This research aims to automate the technical tasks related to audio mixing while freeing the audio engineer to perform the fine‐tuning involved in generating an aesthetically‐pleasing sound mix. Although the system mainly deals with the technical constraints involved in generating an audio mix, the developed system takes advantage of common practices performed by sound engineers whenever possible. The system also makes use of inter‐dependent channel information for controlling signal processing tasks while aiming to maintain system stability at all times. A working implementation of the system is described and subjective evaluation between a human mix and the automatic mix is used to measure the success of the automatic mixing tools

    ENHANCEMENT OF SPEECH INTELLIGIBILITY USING SPEECH TRANSIENTS EXTRACTED BY A WAVELET PACKET-BASED REAL-TIME ALGORITHM

    Get PDF
    Studies have shown that transient speech, which is associated with consonants, transitions between consonants and vowels, and transitions within some vowels, is an important cue for identifying and discriminating speech sounds. However, compared to the relatively steady-state vowel segments of speech, transient speech has much lower energy and thus is easily masked by background noise. Emphasis of transient speech can improve the intelligibility of speech in background noise, but methods to demonstrate this improvement have either identified transient speech manually or proposed algorithms that cannot be implemented to run in real-time.We have developed an algorithm to automatically extract transient speech in real-time. The algorithm involves the use of a function, which we term the transitivity function, to characterize the rate of change of wavelet coefficients of a wavelet packet transform representation of a speech signal. The transitivity function is large and positive when a signal is changing rapidly and small when a signal is in steady state. Two different definitions of the transitivity function, one based on the short-time energy and the other on Mel-frequency cepstral coefficients, were evaluated experimentally, and the MFCC-based transitivity function produced better results. The extracted transient speech signal is used to create modified speech by combining it with original speech.To facilitate comparison of our transient and modified speech to speech processed using methods proposed by other researcher to emphasize transients, we developed three indices. The indices are used to characterize the extent to which a speech modification/processing method emphasizes (1) a particular region of speech, (2) consonants relative to, and (3) onsets and offsets of formants compared to steady formant. These indices are very useful because they quantify differences in speech signals that are difficult to show using spectrograms, spectra and time-domain waveforms.The transient extraction algorithm includes parameters which when varied influence the intelligibility of the extracted transient speech. The best values for these parameters were selected using psycho-acoustic testing. Measurements of speech intelligibility in background noise using psycho-acoustic testing showed that modified speech was more intelligible than original speech, especially at high noise levels (-20 and -15 dB). The incorporation of a method that automatically identifies and boosts unvoiced speech into the algorithm was evaluated and showed that this method does not result in additional speech intelligibility improvements

    Design and Realization of Fully-digital Microwave and Mm-wave Multi-beam Arrays with FPGA/RF-SOC Signal Processing

    Get PDF
    There has been a constant increase in data-traffic and device-connections in mobile wireless communications, which led the fifth generation (5G) implementations to exploit mm-wave bands at 24/28 GHz. The next-generation wireless access point (6G and beyond) will need to adopt large-scale transceiver arrays with a combination of multi-input-multi-output (MIMO) theory and fully digital multi-beam beamforming. The resulting high gain array factors will overcome the high path losses at mm-wave bands, and the simultaneous multi-beams will exploit the multi-directional channels due to multi-path effects and improve the signal-to-noise ratio. Such access points will be based on electronic systems which heavily depend on the integration of RF electronics with digital signal processing performed in Field programmable gate arrays (FPGA)/ RF-system-on-chip (SoC). This dissertation is directed towards the investigation and realization of fully-digital phased arrays that can produce wideband simultaneous multi-beams with FPGA or RF-SoC digital back-ends. The first proposed approach is a spatial bandpass (SBP) IIR filter-based beamformer, and is based on the concepts of space-time network resonance. A 2.4 GHz, 16-element array receiver, has been built for real-time experimental verification of this approach. The second and third approaches are respectively based on Discrete Fourier Transform (DFT) theory, and a lens plus focal planar array theory. Lens based approach is essentially an analog model of DFT. These two approaches are verified for a 28 GHz 800 MHz mm-wave implementation with RF-SoC as the digital back-end. It has been shown that for all proposed multibeam beamformer implementations, the measured beams are well aligned with those of the simulated. The proposed approaches differ in terms of their architectures, hardware complexity and costs, which will be discussed as this dissertation opens up. This dissertation also presents an application of multi-beam approaches for RF directional sensing applications to explore white spaces within the spatio-temporal spectral regions. A real-time directional sensing system is proposed to capture the white spaces within the 2.4 GHz Wi-Fi band. Further, this dissertation investigates the effect of electro-magnetic (EM) mutual coupling in antenna arrays on the real-time performance of fully-digital transceivers. Different algorithms are proposed to uncouple the mutual coupling in digital domain. The first one is based on finding the MC transfer function from the measured S-parameters of the antenna array and employing it in a Frost FIR filter in the beamforming backend. The second proposed method uses fast algorithms to realize the inverse of mutual coupling matrix via tridiagonal Toeplitz matrices having sparse factors. A 5.8 GHz 32-element array and 1-7 GHz 7-element tightly coupled dipole array (TCDA) have been employed to demonstrate the proof-of-concept of these algorithms

    Single-channel source separation using non-negative matrix factorization

    Get PDF
    • 

    corecore