6,542 research outputs found

    A Novel Method for the Absolute Pose Problem with Pairwise Constraints

    Full text link
    Absolute pose estimation is a fundamental problem in computer vision, and it is a typical parameter estimation problem, meaning that efforts to solve it will always suffer from outlier-contaminated data. Conventionally, for a fixed dimensionality d and the number of measurements N, a robust estimation problem cannot be solved faster than O(N^d). Furthermore, it is almost impossible to remove d from the exponent of the runtime of a globally optimal algorithm. However, absolute pose estimation is a geometric parameter estimation problem, and thus has special constraints. In this paper, we consider pairwise constraints and propose a globally optimal algorithm for solving the absolute pose estimation problem. The proposed algorithm has a linear complexity in the number of correspondences at a given outlier ratio. Concretely, we first decouple the rotation and the translation subproblems by utilizing the pairwise constraints, and then we solve the rotation subproblem using the branch-and-bound algorithm. Lastly, we estimate the translation based on the known rotation by using another branch-and-bound algorithm. The advantages of our method are demonstrated via thorough testing on both synthetic and real-world dataComment: 10 pages, 7figure

    A Combinatorial Solution to Non-Rigid 3D Shape-to-Image Matching

    Get PDF
    We propose a combinatorial solution for the problem of non-rigidly matching a 3D shape to 3D image data. To this end, we model the shape as a triangular mesh and allow each triangle of this mesh to be rigidly transformed to achieve a suitable matching to the image. By penalising the distance and the relative rotation between neighbouring triangles our matching compromises between image and shape information. In this paper, we resolve two major challenges: Firstly, we address the resulting large and NP-hard combinatorial problem with a suitable graph-theoretic approach. Secondly, we propose an efficient discretisation of the unbounded 6-dimensional Lie group SE(3). To our knowledge this is the first combinatorial formulation for non-rigid 3D shape-to-image matching. In contrast to existing local (gradient descent) optimisation methods, we obtain solutions that do not require a good initialisation and that are within a bound of the optimal solution. We evaluate the proposed method on the two problems of non-rigid 3D shape-to-shape and non-rigid 3D shape-to-image registration and demonstrate that it provides promising results.Comment: 10 pages, 7 figure

    Computing a Compact Spline Representation of the Medial Axis Transform of a 2D Shape

    Full text link
    We present a full pipeline for computing the medial axis transform of an arbitrary 2D shape. The instability of the medial axis transform is overcome by a pruning algorithm guided by a user-defined Hausdorff distance threshold. The stable medial axis transform is then approximated by spline curves in 3D to produce a smooth and compact representation. These spline curves are computed by minimizing the approximation error between the input shape and the shape represented by the medial axis transform. Our results on various 2D shapes suggest that our method is practical and effective, and yields faithful and compact representations of medial axis transforms of 2D shapes.Comment: GMP14 (Geometric Modeling and Processing

    Robust and Optimal Methods for Geometric Sensor Data Alignment

    Get PDF
    Geometric sensor data alignment - the problem of finding the rigid transformation that correctly aligns two sets of sensor data without prior knowledge of how the data correspond - is a fundamental task in computer vision and robotics. It is inconvenient then that outliers and non-convexity are inherent to the problem and present significant challenges for alignment algorithms. Outliers are highly prevalent in sets of sensor data, particularly when the sets overlap incompletely. Despite this, many alignment objective functions are not robust to outliers, leading to erroneous alignments. In addition, alignment problems are highly non-convex, a property arising from the objective function and the transformation. While finding a local optimum may not be difficult, finding the global optimum is a hard optimisation problem. These key challenges have not been fully and jointly resolved in the existing literature, and so there is a need for robust and optimal solutions to alignment problems. Hence the objective of this thesis is to develop tractable algorithms for geometric sensor data alignment that are robust to outliers and not susceptible to spurious local optima. This thesis makes several significant contributions to the geometric alignment literature, founded on new insights into robust alignment and the geometry of transformations. Firstly, a novel discriminative sensor data representation is proposed that has better viewpoint invariance than generative models and is time and memory efficient without sacrificing model fidelity. Secondly, a novel local optimisation algorithm is developed for nD-nD geometric alignment under a robust distance measure. It manifests a wider region of convergence and a greater robustness to outliers and sampling artefacts than other local optimisation algorithms. Thirdly, the first optimal solution for 3D-3D geometric alignment with an inherently robust objective function is proposed. It outperforms other geometric alignment algorithms on challenging datasets due to its guaranteed optimality and outlier robustness, and has an efficient parallel implementation. Fourthly, the first optimal solution for 2D-3D geometric alignment with an inherently robust objective function is proposed. It outperforms existing approaches on challenging datasets, reliably finding the global optimum, and has an efficient parallel implementation. Finally, another optimal solution is developed for 2D-3D geometric alignment, using a robust surface alignment measure. Ultimately, robust and optimal methods, such as those in this thesis, are necessary to reliably find accurate solutions to geometric sensor data alignment problems
    corecore