41 research outputs found

    Discrete and intersample analysis of systems with aperiodic sampling

    Get PDF
    International audienceThis article addresses the stability analysis of linear time invariant systems with aperiodic sampled-data control. Adopting a difference inclusion formalism, we show that necessary and sufficient stability conditions are given by the existence of discrete-time quasi-quadratic Lyapunov functions. A constructive method for computing such functions is provided from the approximation of the necessary and sufficient conditions. In practice, this leads to sufficient stability criteria under LMI form. The inter-sampling behavior is discussed there: based on differential inclusions, we provide continuous-time methods that use the advantages of the discrete-time approach. The results are illustrated by numerical examples that indicate the improvement with regard to the existing literature

    State observer with Round-Robin aperiodic sampled measurements with jitter

    Get PDF
    A sampled-data observer is proposed for linear continuous-time systems whose outputs are sequentially sampled via non-uniform sampling intervals repeating a prescribed Round-Robin sequence. With constant sampling intervals (jitter-free case) we provide constructive necessary and sufficient conditions for the design of an asymptotic continuous–discrete observer whose estimation error is input-to-state stable (ISS) from process disturbances and measurement noise. We use a time-varying gain depending on the elapsed time since the last measurement. With non-constant sampling intervals (jitter-tolerant case), our design conditions are only sufficient. A suspension system example shows the effectiveness of the proposed approach

    Stabilization of systems with asynchronous sensors and controllers

    Full text link
    We study the stabilization of networked control systems with asynchronous sensors and controllers. Offsets between the sensor and controller clocks are unknown and modeled as parametric uncertainty. First we consider multi-input linear systems and provide a sufficient condition for the existence of linear time-invariant controllers that are capable of stabilizing the closed-loop system for every clock offset in a given range of admissible values. For first-order systems, we next obtain the maximum length of the offset range for which the system can be stabilized by a single controller. Finally, this bound is compared with the offset bounds that would be allowed if we restricted our attention to static output feedback controllers.Comment: 32 pages, 6 figures. This paper was partially presented at the 2015 American Control Conference, July 1-3, 2015, the US

    Stability Verification of Nearly Periodic Impulsive Linear Systems using Reachability Analysis

    No full text
    International audienceThe paper provides stability analysis to certain classes of hybrid systems, more precisely impulsive linear systems. This analysis is conducted using the notion of reachable set. The main contribution in this work is the derivation of theoretical necessary and sufficient conditions for impulsive linear systems with nearly periodic resets subject to timing contracts. This characterization serves as the basis of a computational method for the stability verification of the considered class of systems. In addition, we show how this work handles the problem of timing contract synthesis for the considered class and we generalize our approach to verify stability of impulsive linear systems with stochastic reset instants. Applications on sampled-data control systems and comparisons with existing results are then discussed, showing the effectiveness of our approach

    Jump state estimation with multiple sensors with packet dropping and delaying channels

    Get PDF
    This work addresses the design of a state observer for systems whose outputs are measured through a communication network. The measurements from each sensor node are assumed to arrive randomly, scarcely and with a time-varying delay. The proposed model of the plant and the network measurement scenarios cover the cases of multiple sensors, out-of-sequence measurements, buffered measurements on a single packet and multirate sensor measurements. A jump observer is proposed that selects a different gain depending on the number of periods elapsed between successfully received measurements and on the available data. A finite set of gains is pre-calculated offline with a tractable optimisation problem, where the complexity of the observer implementation is a design parameter. The computational cost of the observer implementation is much lower than in the Kalman filter, whilst the performance is similar. Several examples illustrate the observer design for different measurement scenarios and observer complexity and show the achievable performance
    corecore