218 research outputs found

    Two-soliton collisions in a near-integrable lattice system

    Full text link
    We examine collisions between identical solitons in a weakly perturbed Ablowitz-Ladik (AL) model, augmented by either onsite cubic nonlinearity (which corresponds to the Salerno model, and may be realized as an array of strongly overlapping nonlinear optical waveguides), or a quintic perturbation, or both. Complex dependences of the outcomes of the collisions on the initial phase difference between the solitons and location of the collision point are observed. Large changes of amplitudes and velocities of the colliding solitons are generated by weak perturbations, showing that the elasticity of soliton collisions in the AL model is fragile (for instance, the Salerno's perturbation with the relative strength of 0.08 can give rise to a change of the solitons' amplitudes by a factor exceeding 2). Exact and approximate conservation laws in the perturbed system are examined, with a conclusion that the small perturbations very weakly affect the norm and energy conservation, but completely destroy the conservation of the lattice momentum, which is explained by the absence of the translational symmetry in generic nonintegrable lattice models. Data collected for a very large number of collisions correlate with this conclusion. Asymmetry of the collisions (which is explained by the dependence on the location of the central point of the collision relative to the lattice, and on the phase difference between the solitons) is investigated too, showing that the nonintegrability-induced effects grow almost linearly with the perturbation strength. Different perturbations (cubic and quintic ones) produce virtually identical collision-induced effects, which makes it possible to compensate them, thus finding a special perturbed system with almost elastic soliton collisions.Comment: Phys. Rev. E, in pres

    Interactions and Collisions of Discrete Breathers in Two-Species Bose-Einstein Condensates in Optical Lattices

    Get PDF
    The dynamics of static and travelling breathers in two-species Bose-Einstein condensates in a one-dimensional optical lattice is modelled within the tight-binding approximation. Two coupled discrete nonlinear Schr\"odinger equations describe the interaction of the condensates in two cases of relevance: a mixture of two ytterbium isotopes and a mixture of 87^{87}Rb and 41^{41}K. Depending on their initial separation, interaction between static breathers of different species can lead to the formation of symbiotic structures and transform one of the breathers from a static into a travelling one. Collisions between travelling and static discrete breathers composed of different species are separated in four distinct regimes ranging from totally elastic when the interspecies interaction is highly attractive to mutual destruction when the interaction is sufficiently large and repulsive. We provide an explanation of the collision features in terms of the interspecies coupling and the negative effective mass of the discrete breathers.Comment: 11 pages, 10 figure

    Moving and colliding pulses in the subcritical Ginzburg-Landau model with a standing-wave drive

    Full text link
    We show the existence of steadily moving solitary pulses (SPs) in the complex Ginzburg-Landau (CGL) equation, which includes the cubic-quintic (CQ) nonlinearity and a conservative linear driving term, whose amplitude is a standing wave with wavenumber kk and frequency ω\omega , the motion of the SPs being possible at velocities ±ω/k\pm \omega /k, which provide locking to the drive. A realization of the model may be provided by traveling-wave convection in a narrow channel with a standing wave excited in its bottom (or on the surface). An analytical approximation is developed, based on an effective equation of motion for the SP coordinate. Direct simulations demonstrate that the effective equation accurately predicts characteristics of the driven motion of pulses, such as a threshold value of the drive's amplitude. Collisions between two solitons traveling in opposite directions are studied by means of direct simulations, which reveal that they restore their original shapes and velocity after the collision.Comment: 7 pages, 5 eps figure

    Exact Localized Solutions of Quintic Discrete Nonlinear Schr\"odinger Equation

    Full text link
    We study a new quintic discrete nonlinear Schr\"odinger (QDNLS) equation which reduces naturally to an interesting symmetric difference equation of the form ϕn+1+ϕn1=F(ϕn)\phi_{n+1}+\phi_{n-1}=F(\phi_n). Integrability of the symmetric mapping is checked by singularity confinement criteria and growth properties. Some new exact localized solutions for integrable cases are presented for certain sets of parameters. Although these exact localized solutions represent only a small subset of the large variety of possible solutions admitted by the QDNLS equation, those solutions presented here are the first example of exact localized solutions of the QDNLS equation. We also find chaotic behavior for certain parameters of nonintegrable case.Comment: 12 pages,4 figures(eps files),revised,Physics Letters A, In pres

    Motion of discrete solitons assisted by nonlinearity management

    Get PDF
    We demonstrate that periodic modulation of the nonlinearity coefficient in the discrete nonlinear Schr\"{o}dinger (DNLS) equation can strongly facilitate creation of traveling solitons in the lattice. We predict this possibility in an analytical form, and test it in direct simulations. Systematic simulations reveal several generic dynamical regimes, depending on the amplitude and frequency of the time modulation, and on initial thrust which sets the soliton in motion. These regimes include irregular motion, regular motion of a decaying soliton, and regular motion of a stable one. The motion may occur in both the straight and reverse directions, relative to the initial thrust. In the case of stable motion, extremely long simulations in a lattice with periodic boundary conditions demonstrate that the soliton keeps moving as long as we can monitor without any visible loss. Velocities of moving stable solitons are in good agreement with the analytical prediction, which is based on requiring a resonance between the ac drive and motion of the soliton through the periodic potential. All the generic dynamical regimes are mapped in the model's parameter space. Collisions between moving stable solitons are briefly investigated too, with a conclusion that two different outcomes are possible: elastic bounce, or bounce with mass transfer from one soliton to the other. The model can be realized experimentally in a Bose-Einstein condensate trapped in a deep optical lattice

    Multistable Solitons in Higher-Dimensional Cubic-Quintic Nonlinear Schroedinger Lattices

    Full text link
    We study the existence, stability, and mobility of fundamental discrete solitons in two- and three-dimensional nonlinear Schroedinger lattices with a combination of cubic self-focusing and quintic self-defocusing onsite nonlinearities. Several species of stationary solutions are constructed, and bifurcations linking their families are investigated using parameter continuation starting from the anti-continuum limit, and also with the help of a variational approximation. In particular, a species of hybrid solitons, intermediate between the site- and bond-centered types of the localized states (with no counterpart in the 1D model), is analyzed in 2D and 3D lattices. We also discuss the mobility of multi-dimensional discrete solitons that can be set in motion by lending them kinetic energy exceeding the appropriately crafted Peierls-Nabarro barrier; however, they eventually come to a halt, due to radiation loss.Comment: 12 pages, 17 figure

    Discrete Nonlinear Schrodinger Equations with arbitrarily high order nonlinearities

    Get PDF
    A class of discrete nonlinear Schrodinger equations with arbitrarily high order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrodinger equation and the Ablowitz-Ladik equation. As a common property, these equations possess three kinds of exact analytical stationary solutions for which the Peierls-Nabarro barrier is zero. Several properties of these solutions, including stability, discrete breathers and moving solutions, are investigated

    Mobility of solitons in one-dimensional lattices with the cubic-quintic nonlinearity

    Full text link
    We investigate mobility regimes for localized modes in the discrete nonlinear Schr\"{o}dinger (DNLS) equation with the cubic-quintic onsite terms. Using the variational approximation (VA), the largest soliton's total power admitting progressive motion of kicked discrete solitons is predicted, by comparing the effective kinetic energy with the respective Peierls-Nabarro (PN) potential barrier. The prediction is novel for the DNLS model with the cubic-only nonlinearity too, demonstrating a reasonable agreement with numerical findings. Small self-focusing quintic term quickly suppresses the mobility. In the case of the competition between the cubic self-focusing and quintic self-defocusing terms, we identify parameter regions where odd and even fundamental modes exchange their stability, involving intermediate asymmetric modes. In this case, stable solitons can be set in motion by kicking, so as to let them pass the PN barrier. Unstable solitons spontaneously start oscillatory or progressive motion, if they are located, respectively, below or above a mobility threshold. Collisions between moving discrete solitons, at the competing nonlinearities frame, are studied too.Comment: 12 pages, 15 figure
    corecore