6,263 research outputs found

    Cluster Grid based Response-time analysis module for the PIPE Tool.

    No full text
    Generalized Stochastic Petri Nets (GSPNs) are a widely used high-level formalism used for modelling discrete-event systems. The Platform Independent Petri net Editor (PIPE) is an open source software project that allows creation, analysis and simulation of Petri Nets. This tool paper presents a PIPE module for response-time analysis of a Petri net’s underlying Continuous Time Markov Chain (CTMC). Jobs are submitted via a web interface, from within PIPE or from a browser. The parallel computations are run using Grid Engine on a cluster hosted at Imperial College London. 1

    Stochastic DES Fault Diagnosis with Coloured Interpreted Petri Nets

    Get PDF
    [EN] This proposal presents an online method to detect and isolate faults in stochastic discrete event systems without previous model. A coloured timed interpreted Petri Net generates the normal behavior language after an identification stage.The next step is fault detection that is carried out by comparing the observed event sequences with the expected event sequences. Once a new fault is detected, a learning algorithm changes the structure of the diagnoser, so it is able to learn new fault languages. Moreover, the diagnoser includes timed events to represent and diagnose stochastic languages. Finally, this paper proposes a detectability condition for stochastic DES and the sufficient and necessary conditions are proved.This work was supported by a grant from the Universidad del Cauca, Reference 2.3-31.2/05 2011.Muñoz-Añasco, DM.; Correcher Salvador, A.; García Moreno, E.; Morant Anglada, FJ. (2015). Stochastic DES Fault Diagnosis with Coloured Interpreted Petri Nets. Mathematical Problems in Engineering. 2015:1-13. https://doi.org/10.1155/2015/303107S1132015Jiang, S., & Kumar, R. (2004). Failure Diagnosis of Discrete-Event Systems With Linear-Time Temporal Logic Specifications. IEEE Transactions on Automatic Control, 49(6), 934-945. doi:10.1109/tac.2004.829616Zaytoon, J., & Lafortune, S. (2013). Overview of fault diagnosis methods for Discrete Event Systems. Annual Reviews in Control, 37(2), 308-320. doi:10.1016/j.arcontrol.2013.09.009Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., & Teneketzis, D. (1995). Diagnosability of discrete-event systems. IEEE Transactions on Automatic Control, 40(9), 1555-1575. doi:10.1109/9.412626Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., & Teneketzis, D. C. (1996). Failure diagnosis using discrete-event models. IEEE Transactions on Control Systems Technology, 4(2), 105-124. doi:10.1109/87.486338Estrada-Vargas, A. P., López-Mellado, E., & Lesage, J.-J. (2010). A Comparative Analysis of Recent Identification Approaches for Discrete-Event Systems. Mathematical Problems in Engineering, 2010, 1-21. doi:10.1155/2010/453254Cabasino, M. P., Giua, A., & Seatzu, C. (2010). Fault detection for discrete event systems using Petri nets with unobservable transitions. Automatica, 46(9), 1531-1539. doi:10.1016/j.automatica.2010.06.013Prock, J. (1991). A new technique for fault detection using Petri nets. Automatica, 27(2), 239-245. doi:10.1016/0005-1098(91)90074-cAghasaryan, A., Fabre, E., Benveniste, A., Boubour, R., & Jard, C. (1998). Discrete Event Dynamic Systems, 8(2), 203-231. doi:10.1023/a:1008241818642Hadjicostis, C. N., & Verghese, G. C. (1999). Monitoring Discrete Event Systems Using Petri Net Embeddings. Application and Theory of Petri Nets 1999, 188-207. doi:10.1007/3-540-48745-x_12Benveniste, A., Fabre, E., Haar, S., & Jard, C. (2003). Diagnosis of asynchronous discrete-event systems: a net unfolding approach. IEEE Transactions on Automatic Control, 48(5), 714-727. doi:10.1109/tac.2003.811249Genc, S., & Lafortune, S. (2003). Distributed Diagnosis of Discrete-Event Systems Using Petri Nets. Lecture Notes in Computer Science, 316-336. doi:10.1007/3-540-44919-1_21Genc, S., & Lafortune, S. (2007). Distributed Diagnosis of Place-Bordered Petri Nets. IEEE Transactions on Automation Science and Engineering, 4(2), 206-219. doi:10.1109/tase.2006.879916Ramirez-Trevino, A., Ruiz-Beltran, E., Rivera-Rangel, I., & Lopez-Mellado, E. (2007). Online Fault Diagnosis of Discrete Event Systems. A Petri Net-Based Approach. IEEE Transactions on Automation Science and Engineering, 4(1), 31-39. doi:10.1109/tase.2006.872120Dotoli, M., Fanti, M. P., Mangini, A. M., & Ukovich, W. (2009). On-line fault detection in discrete event systems by Petri nets and integer linear programming. Automatica, 45(11), 2665-2672. doi:10.1016/j.automatica.2009.07.021Fanti, M. P., Mangini, A. M., & Ukovich, W. (2013). Fault Detection by Labeled Petri Nets in Centralized and Distributed Approaches. IEEE Transactions on Automation Science and Engineering, 10(2), 392-404. doi:10.1109/tase.2012.2203596Basile, F., Chiacchio, P., & De Tommasi, G. (2009). An Efficient Approach for Online Diagnosis of Discrete Event Systems. IEEE Transactions on Automatic Control, 54(4), 748-759. doi:10.1109/tac.2009.2014932Roth, M., Lesage, J.-J., & Litz, L. (2011). The concept of residuals for fault localization in discrete event systems. Control Engineering Practice, 19(9), 978-988. doi:10.1016/j.conengprac.2011.02.008Roth, M., Schneider, S., Lesage, J.-J., & Litz, L. (2012). Fault detection and isolation in manufacturing systems with an identified discrete event model. International Journal of Systems Science, 43(10), 1826-1841. doi:10.1080/00207721.2011.649369Chung-Hsien Kuo, & Han-Pang Huang. (2000). Failure modeling and process monitoring for flexible manufacturing systems using colored timed Petri nets. IEEE Transactions on Robotics and Automation, 16(3), 301-312. doi:10.1109/70.850648Ramirez-Trevino, A., Ruiz-Beltran, E., Aramburo-Lizarraga, J., & Lopez-Mellado, E. (2012). Structural Diagnosability of DES and Design of Reduced Petri Net Diagnosers. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 42(2), 416-429. doi:10.1109/tsmca.2011.2169950Cabasino, M. P., Giua, A., & Seatzu, C. (2014). Diagnosability of Discrete-Event Systems Using Labeled Petri Nets. IEEE Transactions on Automation Science and Engineering, 11(1), 144-153. doi:10.1109/tase.2013.2289360Yao, L., Feng, L., & Jiang, B. (2014). Fault Diagnosis and Fault Tolerant Control for Non-Gaussian Singular Time-Delayed Stochastic Distribution Systems. Mathematical Problems in Engineering, 2014, 1-9. doi:10.1155/2014/937583Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4), 541-580. doi:10.1109/5.24143Dotoli, M., Fanti, M. P., & Mangini, A. M. (2008). Real time identification of discrete event systems using Petri nets. Automatica, 44(5), 1209-1219. doi:10.1016/j.automatica.2007.10.014Muñoz, D. M., Correcher, A., García, E., & Morant, F. (2014). Identification of Stochastic Timed Discrete Event Systems with st-IPN. Mathematical Problems in Engineering, 2014, 1-21. doi:10.1155/2014/835312Latorre-Biel, J.-I., Jiménez-Macías, E., Pérez de la Parte, M., Blanco-Fernández, J., & Martínez-Cámara, E. (2014). Control of Discrete Event Systems by Means of Discrete Optimization and Disjunctive Colored PNs: Application to Manufacturing Facilities. Abstract and Applied Analysis, 2014, 1-16. doi:10.1155/2014/821707Cabasino, M. P., Giua, A., Lafortune, S., & Seatzu, C. (2012). A New Approach for Diagnosability Analysis of Petri Nets Using Verifier Nets. IEEE Transactions on Automatic Control, 57(12), 3104-3117. doi:10.1109/tac.2012.2200372Abdelwahed, S., Karsai, G., Mahadevan, N., & Ofsthun, S. C. (2009). Practical Implementation of Diagnosis Systems Using Timed Failure Propagation Graph Models. IEEE Transactions on Instrumentation and Measurement, 58(2), 240-247. doi:10.1109/tim.2008.200595

    Identification of Stochastic Timed Discrete Event Systems with st-IPN

    Get PDF
    [EN] This paper presents amethod for the identification of stochastic timed discrete event systems, based on the analysis of the behavior of the input and output signals, arranged in a timeline. To achieve this goal stochastic timed interpreted Petri nets are defined.These nets link timed discrete event systems modelling with stochastic time modelling. The procedure starts with the observation of the input/output signals; these signals are converted into events, so that the sequence of events is the observed language. This language arrives to an identifier that builds a stochastic timed interpreted Petri net which generates the same language. The identified model is a deterministic generator of the observed language.The identification method also includes an algorithm that determines when the identification process is over.This work was supported by a Grant from the Universidad del Cauca, reference 2.3-31.2/05 2011.Muñoz-Añasco, DM.; Correcher Salvador, A.; García Moreno, E.; Morant Anglada, FJ. (2014). Identification of Stochastic Timed Discrete Event Systems with st-IPN. Mathematical Problems in Engineering. 2014:1-21. https://doi.org/10.1155/2014/835312S1212014Cassandras, C. G., & Lafortune, S. (Eds.). (2008). Introduction to Discrete Event Systems. doi:10.1007/978-0-387-68612-7Yingwei Zhang, Jiayu An, & Chi Ma. (2013). Fault Detection of Non-Gaussian Processes Based on Model Migration. IEEE Transactions on Control Systems Technology, 21(5), 1517-1526. doi:10.1109/tcst.2012.2217966Ichikawa, A., & Hiraishi, K. (s. f.). Analysis and control of discrete event systems represented by petri nets. Lecture Notes in Control and Information Sciences, 115-134. doi:10.1007/bfb0042308Fanti, M. P., Mangini, A. M., & Ukovich, W. (2013). Fault Detection by Labeled Petri Nets in Centralized and Distributed Approaches. IEEE Transactions on Automation Science and Engineering, 10(2), 392-404. doi:10.1109/tase.2012.2203596Cabasino, M. P., Giua, A., & Seatzu, C. (2010). Fault detection for discrete event systems using Petri nets with unobservable transitions. Automatica, 46(9), 1531-1539. doi:10.1016/j.automatica.2010.06.013Hu, H., Zhou, M., Li, Z., & Tang, Y. (2013). An Optimization Approach to Improved Petri Net Controller Design for Automated Manufacturing Systems. IEEE Transactions on Automation Science and Engineering, 10(3), 772-782. doi:10.1109/tase.2012.2201714Hu, H., Zhou, M., & Li, Z. (2011). Supervisor Optimization for Deadlock Resolution in Automated Manufacturing Systems With Petri Nets. IEEE Transactions on Automation Science and Engineering, 8(4), 794-804. doi:10.1109/tase.2011.2156783Hiraishi, K. (1992). Construction of a class of safe Petri nets by presenting firing sequences. Lecture Notes in Computer Science, 244-262. doi:10.1007/3-540-55676-1_14Estrada-Vargas, A. P., López-Mellado, E., & Lesage, J.-J. (2010). A Comparative Analysis of Recent Identification Approaches for Discrete-Event Systems. Mathematical Problems in Engineering, 2010, 1-21. doi:10.1155/2010/453254Shaolong Shu, & Feng Lin. (2013). I-Detectability of Discrete-Event Systems. IEEE Transactions on Automation Science and Engineering, 10(1), 187-196. doi:10.1109/tase.2012.2215959Li, L., & Hadjicostis, C. N. (2011). Least-Cost Transition Firing Sequence Estimation in Labeled Petri Nets With Unobservable Transitions. IEEE Transactions on Automation Science and Engineering, 8(2), 394-403. doi:10.1109/tase.2010.2070065Supavatanakul, P., Lunze, J., Puig, V., & Quevedo, J. (2006). Diagnosis of timed automata: Theory and application to the DAMADICS actuator benchmark problem. Control Engineering Practice, 14(6), 609-619. doi:10.1016/j.conengprac.2005.03.028Dotoli, M., Fanti, M. P., & Mangini, A. M. (2008). Real time identification of discrete event systems using Petri nets. Automatica, 44(5), 1209-1219. doi:10.1016/j.automatica.2007.10.014Chen, Y., Li, Z., Khalgui, M., & Mosbahi, O. (2011). Design of a Maximally Permissive Liveness- Enforcing Petri Net Supervisor for Flexible Manufacturing Systems. IEEE Transactions on Automation Science and Engineering, 8(2), 374-393. doi:10.1109/tase.2010.2060332Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4), 541-580. doi:10.1109/5.24143Ramirez-Trevino, A., Ruiz-Beltran, E., Aramburo-Lizarraga, J., & Lopez-Mellado, E. (2012). Structural Diagnosability of DES and Design of Reduced Petri Net Diagnosers. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 42(2), 416-429. doi:10.1109/tsmca.2011.2169950Ramirez-Trevino, A., Ruiz-Beltran, E., Rivera-Rangel, I., & Lopez-Mellado, E. (2007). Online Fault Diagnosis of Discrete Event Systems. A Petri Net-Based Approach. IEEE Transactions on Automation Science and Engineering, 4(1), 31-39. doi:10.1109/tase.2006.872120Toutenburg, H. (1974). Fleiss, J. L.: Statistical Methods for Rates and Proportions. John Wiley & Sons, New York-London-Sydney-Toronto 1973. XIII, 233 S. Biometrische Zeitschrift, 16(8), 539-539. doi:10.1002/bimj.19740160814Livingston, E. H., & Cassidy, L. (2005). Statistical Power and Estimation of the Number of Required Subjects for a Study Based on the t-Test: A Surgeon’s Primer. Journal of Surgical Research, 126(2), 149-159. doi:10.1016/j.jss.2004.12.013Ruppert, D. (2011). Statistics and Data Analysis for Financial Engineering. Springer Texts in Statistics. doi:10.1007/978-1-4419-7787-

    PETRI NET BASED APPROACHES TO MANUFACTURING SYSTEMS

    Get PDF
    This paper describes the planning in manufacturing systems. The skeleton and the functionality of a Petri Net Toolbox, embedded in the Matlab environment, are briefly presented, as offering a collection of instruments devoted to simulation, analysis and synthesis of discrete event systems. Timed Petri Nets are used to model operational and routing in production systems. A generalized multi productive machine modules is defined, adapter to system feature, repeated and connected to compose the TPN models of production systems with different levels of routing and operation. The present paper approaches the stochastic medium considered to be fundamental in describing the changes and the aleatory variations during the desertion process of machines and blocking times in the processing activity. We intend to present a simulated model according to which we can establish the time variation and the outputs process in a simple production system.Petri Nets, discrete event, manufacturing systems

    CSL model checking of Deterministic and Stochastic Petri Nets

    Get PDF
    Deterministic and Stochastic Petri Nets (DSPNs) are a widely used high-level formalism for modeling discrete-event systems where events may occur either without consuming time, after a deterministic time, or after an exponentially distributed time. The underlying process dened by DSPNs, under certain restrictions, corresponds to a class of Markov Regenerative Stochastic Processes (MRGP). In this paper, we investigate the use of CSL (Continuous Stochastic Logic) to express probabilistic properties, such a time-bounded until and time-bounded next, at the DSPN level. The verication of such properties requires the solution of the steady-state and transient probabilities of the underlying MRGP. We also address a number of semantic issues regarding the application of CSL on MRGP and provide numerical model checking algorithms for this logic. A prototype model checker, based on SPNica, is also described

    Petri nets for systems and synthetic biology

    Get PDF
    We give a description of a Petri net-based framework for modelling and analysing biochemical pathways, which uni¯es the qualita- tive, stochastic and continuous paradigms. Each perspective adds its con- tribution to the understanding of the system, thus the three approaches do not compete, but complement each other. We illustrate our approach by applying it to an extended model of the three stage cascade, which forms the core of the ERK signal transduction pathway. Consequently our focus is on transient behaviour analysis. We demonstrate how quali- tative descriptions are abstractions over stochastic or continuous descrip- tions, and show that the stochastic and continuous models approximate each other. Although our framework is based on Petri nets, it can be applied more widely to other formalisms which are used to model and analyse biochemical networks

    Analysis of signalling pathways using the prism model checker

    Get PDF
    We describe a new modelling and analysis approach for signal transduction networks in the presence of incomplete data. We illustrate the approach with an example, the RKIP inhibited ERK pathway [1]. Our models are based on high level descriptions of continuous time Markov chains: reactions are modelled as synchronous processes and concentrations are modelled by discrete, abstract quantities. The main advantage of our approach is that using a (continuous time) stochastic logic and the PRISM model checker, we can perform quantitative analysis of queries such as if a concentration reaches a certain level, will it remain at that level thereafter? We also perform standard simulations and compare our results with a traditional ordinary differential equation model. An interesting result is that for the example pathway, only a small number of discrete data values is required to render the simulations practically indistinguishable

    Bisimulation Relations Between Automata, Stochastic Differential Equations and Petri Nets

    Get PDF
    Two formal stochastic models are said to be bisimilar if their solutions as a stochastic process are probabilistically equivalent. Bisimilarity between two stochastic model formalisms means that the strengths of one stochastic model formalism can be used by the other stochastic model formalism. The aim of this paper is to explain bisimilarity relations between stochastic hybrid automata, stochastic differential equations on hybrid space and stochastic hybrid Petri nets. These bisimilarity relations make it possible to combine the formal verification power of automata with the analysis power of stochastic differential equations and the compositional specification power of Petri nets. The relations and their combined strengths are illustrated for an air traffic example.Comment: 15 pages, 4 figures, Workshop on Formal Methods for Aerospace (FMA), EPTCS 20m 201
    corecore