80,508 research outputs found

    Symbol Emergence in Robotics: A Survey

    Full text link
    Humans can learn the use of language through physical interaction with their environment and semiotic communication with other people. It is very important to obtain a computational understanding of how humans can form a symbol system and obtain semiotic skills through their autonomous mental development. Recently, many studies have been conducted on the construction of robotic systems and machine-learning methods that can learn the use of language through embodied multimodal interaction with their environment and other systems. Understanding human social interactions and developing a robot that can smoothly communicate with human users in the long term, requires an understanding of the dynamics of symbol systems and is crucially important. The embodied cognition and social interaction of participants gradually change a symbol system in a constructive manner. In this paper, we introduce a field of research called symbol emergence in robotics (SER). SER is a constructive approach towards an emergent symbol system. The emergent symbol system is socially self-organized through both semiotic communications and physical interactions with autonomous cognitive developmental agents, i.e., humans and developmental robots. Specifically, we describe some state-of-art research topics concerning SER, e.g., multimodal categorization, word discovery, and a double articulation analysis, that enable a robot to obtain words and their embodied meanings from raw sensory--motor information, including visual information, haptic information, auditory information, and acoustic speech signals, in a totally unsupervised manner. Finally, we suggest future directions of research in SER.Comment: submitted to Advanced Robotic

    Exploring Causal Influences

    Get PDF
    Recent data mining techniques exploit patterns of statistical independence in multivariate data to make conjectures about cause/effect relationships. These relationships can be used to construct causal graphs, which are sometimes represented by weighted node-link diagrams, with nodes representing variables and combinations of weighted links and/or nodes showing the strength of causal relationships. We present an interactive visualization for causal graphs (ICGs), inspired in part by the Influence Explorer. The key principles of this visualization are as follows: Variables are represented with vertical bars attached to nodes in a graph. Direct manipulation of variables is achieved by sliding a variable value up and down, which reveals causality by producing instantaneous change in causally and/or probabilistically linked variables. This direct manipulation technique gives users the impression they are causally influencing the variables linked to the one they are manipulating. In this context, we demonstrate the subtle distinction between seeing and setting of variable values, and in an extended example, show how this visualization can help a user understand the relationships in a large variable set, and with some intuitions about the domain and a few basic concepts, quickly detect bugs in causal models constructed from these data mining techniques

    Knowledge data discovery and data mining in a design environment

    Get PDF
    Designers, in the process of satisfying design requirements, generally encounter difficulties in, firstly, understanding the problem and secondly, finding a solution [Cross 1998]. Often the process of understanding the problem and developing a feasible solution are developed simultaneously by proposing a solution to gauge the extent to which the solution satisfies the specific requirements. Support for future design activities has long been recognised to exist in the form of past design cases, however the varying degrees of similarity and dissimilarity found between previous and current design requirements and solutions has restrained the effectiveness of utilising past design solutions. The knowledge embedded within past designs provides a source of experience with the potential to be utilised in future developments provided that the ability to structure and manipulate that knowledgecan be made a reality. The importance of providing the ability to manipulate past design knowledge, allows the ranging viewpoints experienced by a designer, during a design process, to be reflected and supported. Data Mining systems are gaining acceptance in several domains but to date remain largely unrecognised in terms of the potential to support design activities. It is the focus of this paper to introduce the functionality possessed within the realm of Data Mining tools, and to evaluate the level of support that may be achieved in manipulating and utilising experiential knowledge to satisfy designers' ranging perspectives throughout a product's development

    Some Thoughts on Hypercomputation

    Full text link
    Hypercomputation is a relatively new branch of computer science that emerged from the idea that the Church--Turing Thesis, which is supposed to describe what is computable and what is noncomputable, cannot possible be true. Because of its apparent validity, the Church--Turing Thesis has been used to investigate the possible limits of intelligence of any imaginable life form, and, consequently, the limits of information processing, since living beings are, among others, information processors. However, in the light of hypercomputation, which seems to be feasibly in our universe, one cannot impose arbitrary limits to what intelligence can achieve unless there are specific physical laws that prohibit the realization of something. In addition, hypercomputation allows us to ponder about aspects of communication between intelligent beings that have not been considered befor

    Learning Large-Scale Bayesian Networks with the sparsebn Package

    Get PDF
    Learning graphical models from data is an important problem with wide applications, ranging from genomics to the social sciences. Nowadays datasets often have upwards of thousands---sometimes tens or hundreds of thousands---of variables and far fewer samples. To meet this challenge, we have developed a new R package called sparsebn for learning the structure of large, sparse graphical models with a focus on Bayesian networks. While there are many existing software packages for this task, this package focuses on the unique setting of learning large networks from high-dimensional data, possibly with interventions. As such, the methods provided place a premium on scalability and consistency in a high-dimensional setting. Furthermore, in the presence of interventions, the methods implemented here achieve the goal of learning a causal network from data. Additionally, the sparsebn package is fully compatible with existing software packages for network analysis.Comment: To appear in the Journal of Statistical Software, 39 pages, 7 figure
    • …
    corecore