6,164 research outputs found

    On Coding for Reliable Communication over Packet Networks

    Full text link
    We present a capacity-achieving coding scheme for unicast or multicast over lossy packet networks. In the scheme, intermediate nodes perform additional coding yet do not decode nor even wait for a block of packets before sending out coded packets. Rather, whenever they have a transmission opportunity, they send out coded packets formed from random linear combinations of previously received packets. All coding and decoding operations have polynomial complexity. We show that the scheme is capacity-achieving as long as packets received on a link arrive according to a process that has an average rate. Thus, packet losses on a link may exhibit correlation in time or with losses on other links. In the special case of Poisson traffic with i.i.d. losses, we give error exponents that quantify the rate of decay of the probability of error with coding delay. Our analysis of the scheme shows that it is not only capacity-achieving, but that the propagation of packets carrying "innovative" information follows the propagation of jobs through a queueing network, and therefore fluid flow models yield good approximations. We consider networks with both lossy point-to-point and broadcast links, allowing us to model both wireline and wireless packet networks.Comment: 33 pages, 6 figures; revised appendi

    Some aspects of queueing and storage processes : a thesis in partial fulfilment of the requirements for the degree of Master of Science in Statistics at Massey University

    Get PDF
    In this study the nature of systems consisting of a single queue are first considered. Attention is then drawn to an analogy between such systems and storage systems. A development of the single queue viz queues with feedback is considered after first considering feedback processes in general. The behaviour of queues, some with feedback loops, combined into networks is then considered. Finally, the application of such networks to the analysis of interconnected reservoir systems is considered and the conclusion drawn that such analytic methods complement the more recently developed mathematical programming methods by providing analytic solutions for sub systems behaviour and thus guiding the development of a system model

    Direct Coupling Method for Time-Accurate Solution of Incompressible Navier-Stokes Equations

    Get PDF
    A noniterative finite difference numerical method is presented for the solution of the incompressible Navier-Stokes equations with second order accuracy in time and space. Explicit treatment of convection and diffusion terms and implicit treatment of the pressure gradient give a single pressure Poisson equation when the discretized momentum and continuity equations are combined. A pressure boundary condition is not needed on solid boundaries in the staggered mesh system. The solution of the pressure Poisson equation is obtained directly by Gaussian elimination. This method is tested on flow problems in a driven cavity and a curved duct

    A fast immersed boundary method for external incompressible viscous flows using lattice Green's functions

    Get PDF
    A new parallel, computationally efficient immersed boundary method for solving three-dimensional, viscous, incompressible flows on unbounded domains is presented. Immersed surfaces with prescribed motions are generated using the interpolation and regularization operators obtained from the discrete delta function approach of the original (Peskin's) immersed boundary method. Unlike Peskin's method, boundary forces are regarded as Lagrange multipliers that are used to satisfy the no-slip condition. The incompressible Navier-Stokes equations are discretized on an unbounded staggered Cartesian grid and are solved in a finite number of operations using lattice Green's function techniques. These techniques are used to automatically enforce the natural free-space boundary conditions and to implement a novel block-wise adaptive grid that significantly reduces the run-time cost of solutions by limiting operations to grid cells in the immediate vicinity and near-wake region of the immersed surface. These techniques also enable the construction of practical discrete viscous integrating factors that are used in combination with specialized half-explicit Runge-Kutta schemes to accurately and efficiently solve the differential algebraic equations describing the discrete momentum equation, incompressibility constraint, and no-slip constraint. Linear systems of equations resulting from the time integration scheme are efficiently solved using an approximation-free nested projection technique. The algebraic properties of the discrete operators are used to reduce projection steps to simple discrete elliptic problems, e.g. discrete Poisson problems, that are compatible with recent parallel fast multipole methods for difference equations. Numerical experiments on low-aspect-ratio flat plates and spheres at Reynolds numbers up to 3,700 are used to verify the accuracy and physical fidelity of the formulation.Comment: 32 pages, 9 figures; preprint submitted to Journal of Computational Physic

    Computational fluid dynamics research at the United Technologies Research Center requiring supercomputers

    Get PDF
    An overview of research activities at the United Technologies Research Center (UTRC) in the area of Computational Fluid Dynamics (CFD) is presented. The requirement and use of various levels of computers, including supercomputers, for the CFD activities is described. Examples of CFD directed toward applications to helicopters, turbomachinery, heat exchangers, and the National Aerospace Plane are included. Helicopter rotor codes for the prediction of rotor and fuselage flow fields and airloads were developed with emphasis on rotor wake modeling. Airflow and airload predictions and comparisons with experimental data are presented. Examples are presented of recent parabolized Navier-Stokes and full Navier-Stokes solutions for hypersonic shock-wave/boundary layer interaction, and hydrogen/air supersonic combustion. In addition, other examples of CFD efforts in turbomachinery Navier-Stokes methodology and separated flow modeling are presented. A brief discussion of the 3-tier scientific computing environment is also presented, in which the researcher has access to workstations, mid-size computers, and supercomputers

    Numerical simulations of fuel droplet flows using a Lagrangian triangular mesh

    Get PDF
    The incompressible, Lagrangian, triangular grid code, SPLISH, was converted for the study of flows in and around fuel droplets. This involved developing, testing and incorporating algorithms for surface tension and viscosity. The major features of the Lagrangian method and the algorithms are described. Benchmarks of the algorithms are given. Several calculations are presented for kerosene droplets in air. Finally, extensions which make the code compressible and three dimensional are discussed

    Point queue models: a unified approach

    Full text link
    In transportation and other types of facilities, various queues arise when the demands of service are higher than the supplies, and many point and fluid queue models have been proposed to study such queueing systems. However, there has been no unified approach to deriving such models, analyzing their relationships and properties, and extending them for networks. In this paper, we derive point queue models as limits of two link-based queueing model: the link transmission model and a link queue model. With two definitions for demand and supply of a point queue, we present four point queue models, four approximate models, and their discrete versions. We discuss the properties of these models, including equivalence, well-definedness, smoothness, and queue spillback, both analytically and with numerical examples. We then analytically solve Vickrey's point queue model and stationary states in various models. We demonstrate that all existing point and fluid queue models in the literature are special cases of those derived from the link-based queueing models. Such a unified approach leads to systematic methods for studying the queueing process at a point facility and will also be helpful for studies on stochastic queues as well as networks of queues.Comment: 25 pages, 6 figure

    Transition stages of Rayleigh–Taylor instability between miscible fluids

    Get PDF
    Direct numerical simulations (DNS) are presented of three-dimensional, Rayleigh–Taylor instability (RTI) between two incompressible, miscible fluids, with a 3:1 density ratio. Periodic boundary conditions are imposed in the horizontal directions of a rectangular domain, with no-slip top and bottom walls. Solutions are obtained for the Navier–Stokes equations, augmented by a species transport-diffusion equation, with various initial perturbations. The DNS achieved outer-scale Reynolds numbers, based on mixing-zone height and its rate of growth, in excess of 3000. Initial growth is diffusive and independent of the initial perturbations. The onset of nonlinear growth is not predicted by available linear-stability theory. Following the diffusive-growth stage, growth rates are found to depend on the initial perturbations, up to the end of the simulations. Mixing is found to be even more sensitive to initial conditions than growth rates. Taylor microscales and Reynolds numbers are anisotropic throughout the simulations. Improved collapse of many statistics is achieved if the height of the mixing zone, rather than time, is used as the scaling or progress variable. Mixing has dynamical consequences for this flow, since it is driven by the action of the imposed acceleration field on local density differences
    • …
    corecore