470 research outputs found

    Model-based detection in cyber-physical systems

    Get PDF

    Advanced Fault Diagnosis and Health Monitoring Techniques for Complex Engineering Systems

    Get PDF
    Over the last few decades, the field of fault diagnostics and structural health management has been experiencing rapid developments. The reliability, availability, and safety of engineering systems can be significantly improved by implementing multifaceted strategies of in situ diagnostics and prognostics. With the development of intelligence algorithms, smart sensors, and advanced data collection and modeling techniques, this challenging research area has been receiving ever-increasing attention in both fundamental research and engineering applications. This has been strongly supported by the extensive applications ranging from aerospace, automotive, transport, manufacturing, and processing industries to defense and infrastructure industries

    An Efficient Model-based Diagnosis Engine for Hybrid Systems Using Structural Model Decomposition

    Get PDF
    Complex hybrid systems are present in a large range of engineering applications, like mechanical systems, electrical circuits, or embedded computation systems. The behavior of these systems is made up of continuous and discrete event dynamics that increase the difficulties for accurate and timely online fault diagnosis. The Hybrid Diagnosis Engine (HyDE) offers flexibility to the diagnosis application designer to choose the modeling paradigm and the reasoning algorithms. The HyDE architecture supports the use of multiple modeling paradigms at the component and system level. However, HyDE faces some problems regarding performance in terms of complexity and time. Our focus in this paper is on developing efficient model-based methodologies for online fault diagnosis in complex hybrid systems. To do this, we propose a diagnosis framework where structural model decomposition is integrated within the HyDE diagnosis framework to reduce the computational complexity associated with the fault diagnosis of hybrid systems. As a case study, we apply our approach to a diagnostic testbed, the Advanced Diagnostics and Prognostics Testbed (ADAPT), using real data

    Guaranteed Verification of Dynamic Systems

    Get PDF
    This work introduces a new specification and verification approach for dynamic systems. The introduced approach is able to provide type II error free results by definition, i.e. there are no hidden faults in the verification result. The approach is based on Kaucher interval arithmetic to enclose the measurement in a bounded error sense. The developed methods are proven mathematically to provide a reliable verification for a wide class of safety critical systems

    Guaranteed Verification of Dynamic Systems

    Get PDF
    Diese Arbeit beschreibt einen neuen Spezifikations- und Verifikationsansatz für dynamische Systeme. Der neue Ansatz ermöglicht dabei Ergebnisse, die per Definition frei von Fehlern 2. Art sind. Dies bedeutet, dass das Ergebnis der Verifikation keine versteckten Fehler enthalten kann. Somit können zuverlässige Ergebnisse für die Analyse von sicherheitskritischen Systemen generiert werden. Dazu wird ein neues Verständnis von mengenbasierter Konsistenz dynamischer Systeme mit einer gegebenen Spezifikation eingeführt. Dieses basiert auf der Verwendung von Kaucher Intervall Arithmetik zur Einschließung von Messdaten. Konsistenz wird anhand der vereinigten Lösungsmenge der Kaucher Arithmetik definiert. Dies führt zu mathematisch garantierten Ergebnissen. Die resultierende Methode kann das spezifizierte Verhalten eines dynamischen System auch im Falle von Rauschen und Sensorungenauigkeiten anhand von Messdaten verifizieren. Die mathematische Beweisbarkeit der Konsistenz wird für eine große Klasse von Systemen gezeigt. Diese beinhalten zeitinvariante, intervallartige und hybride Systeme, wobei letztere auch zur Beschreibung von Nichtlinearitäten verwendet werden können. Darüber hinaus werden zahlreiche Erweiterungen dargestellt. Diese führen bis hin zu einem neuartigen iterativen Identifikations- und Segmentierungsverfahren für hybride Systeme. Dieses ermöglicht die Verfikation hybrider Systeme auch ohne Wissen über Schaltzeitpunkte. Die entwickelten Verfahren können darüber hinaus zur Diagnose von dynamischen Systemen verwendet werden, falls eine ausreichend schnelle Berechnung der Ergebnisse möglich ist. Die Verfahren werden erfolgreich auf eine beispielhafte Variation verschiedener Tanksysteme angewendet. Die neuen Theorien, Methoden und Algortihmen dieser Arbeit bilden die Grundlage für eine zuverlässige Analyse von hochautomatisierten sicherheitskritischen Systemen

    Guaranteed Verification of Dynamic Systems

    Get PDF
    This work introduces a new specification and verification approach for dynamic systems. The introduced approach is able to provide type II error free results by definition, i.e. there are no hidden faults in the verification result. The approach is based on Kaucher interval arithmetic to enclose the measurement in a bounded error sense. The developed methods are proven mathematically to provide a reliable verification for a wide class of safety critical systems

    Liquid Transport Pipeline Monitoring Architecture Based on State Estimators for Leak Detection and Location

    Get PDF
    This research presents the implementation of optimization algorithms to build auxiliary signals that can be injected as inputs into a pipeline in order to estimate —by using state observers—physical parameters such as the friction or the velocity of sound in the fluid. For the state estimator design, the parameters to be estimated are incorporated into the state vector of a Liénard-type model of a pipeline such that the observer is constructed from the augmented model. A prescribed observability degree of the augmented model is guaranteed by optimization algorithms by building an optimal input for the identification. The minimization of the input energy is used to define the optimality of the input, whereas the observability Gramian is used to verify the observability. Besides optimization algorithms, a novel method, based on a Liénard-type model, to diagnose single and sequential leaks in pipelines is proposed. In this case, the Liénard-type model that describes the fluid behavior in a pipeline is given only in terms of the flow rate. This method was conceived to be applied in pipelines solely instrumented with flowmeters or in conjunction with pressure sensors that are temporarily out of service. The design approach starts with the discretization of the Liénard-type model spatial domain into a prescribed number of sections. Such discretization is performed to obtain a lumped model capable of providing a solution (an internal flow rate) for every section. From this lumped model, a set of algebraic equations (known as residuals) are deduced as the difference between the internal discrete flows and the nominal flow (the mean of the flow rate calculated prior to the leak). The residual closest to zero will indicate the section where a leak is occurring. The main contribution of our method is that it only requires flow measurements at the pipeline ends, which leads to cost reductions. Some simulation-based tes
    corecore