78,974 research outputs found

    Discrete and Continuous Optimization for Motion Estimation

    Get PDF
    The study of motion estimation reaches back decades and has become one of the central topics of research in computer vision. Even so, there are situations where current approaches fail, such as when there are extreme lighting variations, significant occlusions, or very large motions. In this thesis, we propose several approaches to address these issues. First, we propose a novel continuous optimization framework for estimating optical flow based on a decomposition of the image domain into triangular facets. We show how this allows for occlusions to be easily and naturally handled within our optimization framework without any post-processing. We also show that a triangular decomposition enables us to use a direct Cholesky decomposition to solve the resulting linear systems by reducing its memory requirements. Second, we introduce a simple method for incorporating additional temporal information into optical flow using inertial estimates of the flow, which leads to a significant reduction in error. We evaluate our methods on several datasets and achieve state-of-the-art results on MPI-Sintel. Finally, we introduce a discrete optimization framework for optical flow computation. Discrete approaches have generally been avoided in optical flow because of the relatively large label space that makes them computationally expensive. In our approach, we use recent advances in image segmentation to build a tree-structured graphical model that conforms to the image content. We show how the optimal solution to these discrete optical flow problems can be computed efficiently by making use of optimization methods from the object recognition literature, even for large images with hundreds of thousands of labels

    Plug-in, Trainable Gate for Streamlining Arbitrary Neural Networks

    Full text link
    Architecture optimization, which is a technique for finding an efficient neural network that meets certain requirements, generally reduces to a set of multiple-choice selection problems among alternative sub-structures or parameters. The discrete nature of the selection problem, however, makes this optimization difficult. To tackle this problem we introduce a novel concept of a trainable gate function. The trainable gate function, which confers a differentiable property to discretevalued variables, allows us to directly optimize loss functions that include non-differentiable discrete values such as 0-1 selection. The proposed trainable gate can be applied to pruning. Pruning can be carried out simply by appending the proposed trainable gate functions to each intermediate output tensor followed by fine-tuning the overall model, using any gradient-based training methods. So the proposed method can jointly optimize the selection of the pruned channels while fine-tuning the weights of the pruned model at the same time. Our experimental results demonstrate that the proposed method efficiently optimizes arbitrary neural networks in various tasks such as image classification, style transfer, optical flow estimation, and neural machine translation.Comment: Accepted to AAAI 2020 (Poster

    DCTM: Discrete-Continuous Transformation Matching for Semantic Flow

    Full text link
    Techniques for dense semantic correspondence have provided limited ability to deal with the geometric variations that commonly exist between semantically similar images. While variations due to scale and rotation have been examined, there lack practical solutions for more complex deformations such as affine transformations because of the tremendous size of the associated solution space. To address this problem, we present a discrete-continuous transformation matching (DCTM) framework where dense affine transformation fields are inferred through a discrete label optimization in which the labels are iteratively updated via continuous regularization. In this way, our approach draws solutions from the continuous space of affine transformations in a manner that can be computed efficiently through constant-time edge-aware filtering and a proposed affine-varying CNN-based descriptor. Experimental results show that this model outperforms the state-of-the-art methods for dense semantic correspondence on various benchmarks

    Full Flow: Optical Flow Estimation By Global Optimization over Regular Grids

    Full text link
    We present a global optimization approach to optical flow estimation. The approach optimizes a classical optical flow objective over the full space of mappings between discrete grids. No descriptor matching is used. The highly regular structure of the space of mappings enables optimizations that reduce the computational complexity of the algorithm's inner loop from quadratic to linear and support efficient matching of tens of thousands of nodes to tens of thousands of displacements. We show that one-shot global optimization of a classical Horn-Schunck-type objective over regular grids at a single resolution is sufficient to initialize continuous interpolation and achieve state-of-the-art performance on challenging modern benchmarks.Comment: To be presented at CVPR 201

    Disparity and Optical Flow Partitioning Using Extended Potts Priors

    Full text link
    This paper addresses the problems of disparity and optical flow partitioning based on the brightness invariance assumption. We investigate new variational approaches to these problems with Potts priors and possibly box constraints. For the optical flow partitioning, our model includes vector-valued data and an adapted Potts regularizer. Using the notation of asymptotically level stable functions we prove the existence of global minimizers of our functionals. We propose a modified alternating direction method of minimizers. This iterative algorithm requires the computation of global minimizers of classical univariate Potts problems which can be done efficiently by dynamic programming. We prove that the algorithm converges both for the constrained and unconstrained problems. Numerical examples demonstrate the very good performance of our partitioning method

    Joint Optical Flow and Temporally Consistent Semantic Segmentation

    Full text link
    The importance and demands of visual scene understanding have been steadily increasing along with the active development of autonomous systems. Consequently, there has been a large amount of research dedicated to semantic segmentation and dense motion estimation. In this paper, we propose a method for jointly estimating optical flow and temporally consistent semantic segmentation, which closely connects these two problem domains and leverages each other. Semantic segmentation provides information on plausible physical motion to its associated pixels, and accurate pixel-level temporal correspondences enhance the accuracy of semantic segmentation in the temporal domain. We demonstrate the benefits of our approach on the KITTI benchmark, where we observe performance gains for flow and segmentation. We achieve state-of-the-art optical flow results, and outperform all published algorithms by a large margin on challenging, but crucial dynamic objects.Comment: 14 pages, Accepted for CVRSUAD workshop at ECCV 201

    Simultaneous Stereo Video Deblurring and Scene Flow Estimation

    Full text link
    Videos for outdoor scene often show unpleasant blur effects due to the large relative motion between the camera and the dynamic objects and large depth variations. Existing works typically focus monocular video deblurring. In this paper, we propose a novel approach to deblurring from stereo videos. In particular, we exploit the piece-wise planar assumption about the scene and leverage the scene flow information to deblur the image. Unlike the existing approach [31] which used a pre-computed scene flow, we propose a single framework to jointly estimate the scene flow and deblur the image, where the motion cues from scene flow estimation and blur information could reinforce each other, and produce superior results than the conventional scene flow estimation or stereo deblurring methods. We evaluate our method extensively on two available datasets and achieve significant improvement in flow estimation and removing the blur effect over the state-of-the-art methods.Comment: Accepted to IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 201
    corecore