88,861 research outputs found

    TopologyNet: Topology based deep convolutional neural networks for biomolecular property predictions

    Full text link
    Although deep learning approaches have had tremendous success in image, video and audio processing, computer vision, and speech recognition, their applications to three-dimensional (3D) biomolecular structural data sets have been hindered by the entangled geometric complexity and biological complexity. We introduce topology, i.e., element specific persistent homology (ESPH), to untangle geometric complexity and biological complexity. ESPH represents 3D complex geometry by one-dimensional (1D) topological invariants and retains crucial biological information via a multichannel image representation. It is able to reveal hidden structure-function relationships in biomolecules. We further integrate ESPH and convolutional neural networks to construct a multichannel topological neural network (TopologyNet) for the predictions of protein-ligand binding affinities and protein stability changes upon mutation. To overcome the limitations to deep learning arising from small and noisy training sets, we present a multitask topological convolutional neural network (MT-TCNN). We demonstrate that the present TopologyNet architectures outperform other state-of-the-art methods in the predictions of protein-ligand binding affinities, globular protein mutation impacts, and membrane protein mutation impacts.Comment: 20 pages, 8 figures, 5 table

    High-speed scanless entire bandwidth mid-infrared chemical imaging

    Full text link
    Mid-infrared spectroscopy probes molecular vibrations to identify chemical species and functional groups. Therefore, mid-infrared hyperspectral imaging is one of the most powerful and promising candidates for chemical imaging using optical methods. Yet high-speed and entire bandwidth mid-infrared hyperspectral imaging has not been realized. Here we report a mid-infrared hyperspectral chemical imaging technique that uses chirped pulse upconversion of sub-cycle pulses at the image plane. This technique offers a lateral resolution of 15 μ\mum, and the field of view is adjustable between 800 μ\mum ×\times 600 μ\mum to 12 mm ×\times 9 mm. The hyperspectral imaging produces a 640 ×\times 480 pixel image in 8 s, which covers a spectral range of 640-3015 cm−1^{-1}, comprising 1069 wavelength points and offering a wavenumber resolution of 2.6-3.7 cm−1^{-1}. For discrete frequency mid-infrared imaging, the measurement speed reaches a frame rate of 5 kHz, the repetition rate of the laser. As a demonstration, we effectively identified and mapped different components in a microfluidic device, plant cell, and mouse embryo section. The great capacity and latent force of this technique in chemical imaging promise to be applied to many fields such as chemical analysis, biology, and medicine.Comment: 22 pages, 10 figure

    Super-Resolution Microscopy: A Virus’ Eye View of the Cell

    Get PDF
    It is difficult to observe the molecular choreography between viruses and host cell components, as they exist on a spatial scale beyond the reach of conventional microscopy. However, novel super-resolution microscopy techniques have cast aside technical limitations to reveal a nanoscale view of virus replication and cell biology. This article provides an introduction to super-resolution imaging; in particular, localisation microscopy, and explores the application of such technologies to the study of viruses and tetraspanins, the topic of this special issue

    Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening

    Full text link
    This work introduces a number of algebraic topology approaches, such as multicomponent persistent homology, multi-level persistent homology and electrostatic persistence for the representation, characterization, and description of small molecules and biomolecular complexes. Multicomponent persistent homology retains critical chemical and biological information during the topological simplification of biomolecular geometric complexity. Multi-level persistent homology enables a tailored topological description of inter- and/or intra-molecular interactions of interest. Electrostatic persistence incorporates partial charge information into topological invariants. These topological methods are paired with Wasserstein distance to characterize similarities between molecules and are further integrated with a variety of machine learning algorithms, including k-nearest neighbors, ensemble of trees, and deep convolutional neural networks, to manifest their descriptive and predictive powers for chemical and biological problems. Extensive numerical experiments involving more than 4,000 protein-ligand complexes from the PDBBind database and near 100,000 ligands and decoys in the DUD database are performed to test respectively the scoring power and the virtual screening power of the proposed topological approaches. It is demonstrated that the present approaches outperform the modern machine learning based methods in protein-ligand binding affinity predictions and ligand-decoy discrimination
    • …
    corecore