8,291 research outputs found

    Discrete complex analysis on planar quad-graphs

    Get PDF
    We develop a linear theory of discrete complex analysis on general quad-graphs, continuing and extending previous work of Duffin, Mercat, Kenyon, Chelkak and Smirnov on discrete complex analysis on rhombic quad-graphs. Our approach based on the medial graph yields more instructive proofs of discrete analogs of several classical theorems and even new results. We provide discrete counterparts of fundamental concepts in complex analysis such as holomorphic functions, derivatives, the Laplacian, and exterior calculus. Also, we discuss discrete versions of important basic theorems such as Green's identities and Cauchy's integral formulae. For the first time, we discretize Green's first identity and Cauchy's integral formula for the derivative of a holomorphic function. In this paper, we focus on planar quad-graphs, but we would like to mention that many notions and theorems can be adapted to discrete Riemann surfaces in a straightforward way. In the case of planar parallelogram-graphs with bounded interior angles and bounded ratio of side lengths, we construct a discrete Green's function and discrete Cauchy's kernels with asymptotics comparable to the smooth case. Further restricting to the integer lattice of a two-dimensional skew coordinate system yields appropriate discrete Cauchy's integral formulae for higher order derivatives.Comment: 49 pages, 8 figure

    On the Positivity of the Discrete Green's Function for Unstructured Finite Element Discretizations in Three Dimensions

    Full text link
    The aim of this paper is twofold. First, we prove LpL^p estimates for a regularized Green's function in three dimensions. We then establish new estimates for the discrete Green's function and obtain some positivity results. In particular, we prove that the discrete Green's functions with singularity in the interior of the domain cannot be bounded uniformly with respect of the mesh parameter hh. Actually, we show that at the singularity the discrete Green's function is of order h−1h^{-1}, which is consistent with the behavior of the continuous Green's function. In addition, we also show that the discrete Green's function is positive and decays exponentially away from the singularity. We also provide numerically persistent negative values of the discrete Green's function on Delaunay meshes which then implies a discrete Harnack inequality cannot be established for unstructured finite element discretizations

    The two-, three- and four-gluon sector of QCD in the Landau gauge

    Full text link
    Due to the nonperturbative masslessness of the ghost field, ghost loops that contribute to gluon Green's functions in the Landau gauge display infrared divergences, akin to those one would encounter in a conventional perturbative treatment. This is in sharp contrast with gluon loops, in which the perturbative divergences are tamed by the dynamical generation of a gluon mass acting as an effective infrared cutoff. In this paper, after reviewing the full nonperturbative origin of this divergence in the two-gluon sector, we discuss its implications for the three- and four-gluon sector, showing in particular that some of the form factors characterizing the corresponding Green's functions are bound to diverge in the infrared.Comment: 13 pages, 7 figures. Talk given at Discrete 2014 - Fourth Symposium on Prospects in the Physics of Discrete Symmetries. 2-6 December, 2014 - King's College, London, Englan
    • …
    corecore