3,141 research outputs found

    Discrete Factorization Machines for Fast Feature-based Recommendation

    Full text link
    User and item features of side information are crucial for accurate recommendation. However, the large number of feature dimensions, e.g., usually larger than 10^7, results in expensive storage and computational cost. This prohibits fast recommendation especially on mobile applications where the computational resource is very limited. In this paper, we develop a generic feature-based recommendation model, called Discrete Factorization Machine (DFM), for fast and accurate recommendation. DFM binarizes the real-valued model parameters (e.g., float32) of every feature embedding into binary codes (e.g., boolean), and thus supports efficient storage and fast user-item score computation. To avoid the severe quantization loss of the binarization, we propose a convergent updating rule that resolves the challenging discrete optimization of DFM. Through extensive experiments on two real-world datasets, we show that 1) DFM consistently outperforms state-of-the-art binarized recommendation models, and 2) DFM shows very competitive performance compared to its real-valued version (FM), demonstrating the minimized quantization loss. This work is accepted by IJCAI 2018.Comment: Appeared in IJCAI 201

    Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks

    Full text link
    Factorization Machines (FMs) are a supervised learning approach that enhances the linear regression model by incorporating the second-order feature interactions. Despite effectiveness, FM can be hindered by its modelling of all feature interactions with the same weight, as not all feature interactions are equally useful and predictive. For example, the interactions with useless features may even introduce noises and adversely degrade the performance. In this work, we improve FM by discriminating the importance of different feature interactions. We propose a novel model named Attentional Factorization Machine (AFM), which learns the importance of each feature interaction from data via a neural attention network. Extensive experiments on two real-world datasets demonstrate the effectiveness of AFM. Empirically, it is shown on regression task AFM betters FM with a 8.6%8.6\% relative improvement, and consistently outperforms the state-of-the-art deep learning methods Wide&Deep and DeepCross with a much simpler structure and fewer model parameters. Our implementation of AFM is publicly available at: https://github.com/hexiangnan/attentional_factorization_machineComment: 7 pages, 5 figure

    Neural Collaborative Filtering

    Full text link
    In recent years, deep neural networks have yielded immense success on speech recognition, computer vision and natural language processing. However, the exploration of deep neural networks on recommender systems has received relatively less scrutiny. In this work, we strive to develop techniques based on neural networks to tackle the key problem in recommendation -- collaborative filtering -- on the basis of implicit feedback. Although some recent work has employed deep learning for recommendation, they primarily used it to model auxiliary information, such as textual descriptions of items and acoustic features of musics. When it comes to model the key factor in collaborative filtering -- the interaction between user and item features, they still resorted to matrix factorization and applied an inner product on the latent features of users and items. By replacing the inner product with a neural architecture that can learn an arbitrary function from data, we present a general framework named NCF, short for Neural network-based Collaborative Filtering. NCF is generic and can express and generalize matrix factorization under its framework. To supercharge NCF modelling with non-linearities, we propose to leverage a multi-layer perceptron to learn the user-item interaction function. Extensive experiments on two real-world datasets show significant improvements of our proposed NCF framework over the state-of-the-art methods. Empirical evidence shows that using deeper layers of neural networks offers better recommendation performance.Comment: 10 pages, 7 figure

    Fast Matrix Factorization for Online Recommendation with Implicit Feedback

    Full text link
    This paper contributes improvements on both the effectiveness and efficiency of Matrix Factorization (MF) methods for implicit feedback. We highlight two critical issues of existing works. First, due to the large space of unobserved feedback, most existing works resort to assign a uniform weight to the missing data to reduce computational complexity. However, such a uniform assumption is invalid in real-world settings. Second, most methods are also designed in an offline setting and fail to keep up with the dynamic nature of online data. We address the above two issues in learning MF models from implicit feedback. We first propose to weight the missing data based on item popularity, which is more effective and flexible than the uniform-weight assumption. However, such a non-uniform weighting poses efficiency challenge in learning the model. To address this, we specifically design a new learning algorithm based on the element-wise Alternating Least Squares (eALS) technique, for efficiently optimizing a MF model with variably-weighted missing data. We exploit this efficiency to then seamlessly devise an incremental update strategy that instantly refreshes a MF model given new feedback. Through comprehensive experiments on two public datasets in both offline and online protocols, we show that our eALS method consistently outperforms state-of-the-art implicit MF methods. Our implementation is available at https://github.com/hexiangnan/sigir16-eals.Comment: 10 pages, 8 figure

    A Graphical Model Formulation of Collaborative Filtering Neighbourhood Methods with Fast Maximum Entropy Training

    Full text link
    Item neighbourhood methods for collaborative filtering learn a weighted graph over the set of items, where each item is connected to those it is most similar to. The prediction of a user's rating on an item is then given by that rating of neighbouring items, weighted by their similarity. This paper presents a new neighbourhood approach which we call item fields, whereby an undirected graphical model is formed over the item graph. The resulting prediction rule is a simple generalization of the classical approaches, which takes into account non-local information in the graph, allowing its best results to be obtained when using drastically fewer edges than other neighbourhood approaches. A fast approximate maximum entropy training method based on the Bethe approximation is presented, which uses a simple gradient ascent procedure. When using precomputed sufficient statistics on the Movielens datasets, our method is faster than maximum likelihood approaches by two orders of magnitude.Comment: ICML201

    Multi-Feature Discrete Collaborative Filtering for Fast Cold-start Recommendation

    Full text link
    Hashing is an effective technique to address the large-scale recommendation problem, due to its high computation and storage efficiency on calculating the user preferences on items. However, existing hashing-based recommendation methods still suffer from two important problems: 1) Their recommendation process mainly relies on the user-item interactions and single specific content feature. When the interaction history or the content feature is unavailable (the cold-start problem), their performance will be seriously deteriorated. 2) Existing methods learn the hash codes with relaxed optimization or adopt discrete coordinate descent to directly solve binary hash codes, which results in significant quantization loss or consumes considerable computation time. In this paper, we propose a fast cold-start recommendation method, called Multi-Feature Discrete Collaborative Filtering (MFDCF), to solve these problems. Specifically, a low-rank self-weighted multi-feature fusion module is designed to adaptively project the multiple content features into binary yet informative hash codes by fully exploiting their complementarity. Additionally, we develop a fast discrete optimization algorithm to directly compute the binary hash codes with simple operations. Experiments on two public recommendation datasets demonstrate that MFDCF outperforms the state-of-the-arts on various aspects
    corecore