176 research outputs found

    Canonical extensions and ultraproducts of polarities

    Full text link
    J{\'o}nsson and Tarski's notion of the perfect extension of a Boolean algebra with operators has evolved into an extensive theory of canonical extensions of lattice-based algebras. After reviewing this evolution we make two contributions. First it is shown that the failure of a variety of algebras to be closed under canonical extensions is witnessed by a particular one of its free algebras. The size of the set of generators of this algebra can be made a function of a collection of varieties and is a kind of Hanf number for canonical closure. Secondly we study the complete lattice of stable subsets of a polarity structure, and show that if a class of polarities is closed under ultraproducts, then its stable set lattices generate a variety that is closed under canonical extensions. This generalises an earlier result of the author about generation of canonically closed varieties of Boolean algebras with operators, which was in turn an abstraction of the result that a first-order definable class of Kripke frames determines a modal logic that is valid in its so-called canonical frames

    Finitely generated free Heyting algebras via Birkhoff duality and coalgebra

    Get PDF
    Algebras axiomatized entirely by rank 1 axioms are algebras for a functor and thus the free algebras can be obtained by a direct limit process. Dually, the final coalgebras can be obtained by an inverse limit process. In order to explore the limits of this method we look at Heyting algebras which have mixed rank 0-1 axiomatizations. We will see that Heyting algebras are special in that they are almost rank 1 axiomatized and can be handled by a slight variant of the rank 1 coalgebraic methods

    A non-standard analysis of a cultural icon: The case of Paul Halmos

    Full text link
    We examine Paul Halmos' comments on category theory, Dedekind cuts, devil worship, logic, and Robinson's infinitesimals. Halmos' scepticism about category theory derives from his philosophical position of naive set-theoretic realism. In the words of an MAA biography, Halmos thought that mathematics is "certainty" and "architecture" yet 20th century logic teaches us is that mathematics is full of uncertainty or more precisely incompleteness. If the term architecture meant to imply that mathematics is one great solid castle, then modern logic tends to teach us the opposite lession, namely that the castle is floating in midair. Halmos' realism tends to color his judgment of purely scientific aspects of logic and the way it is practiced and applied. He often expressed distaste for nonstandard models, and made a sustained effort to eliminate first-order logic, the logicians' concept of interpretation, and the syntactic vs semantic distinction. He felt that these were vague, and sought to replace them all by his polyadic algebra. Halmos claimed that Robinson's framework is "unnecessary" but Henson and Keisler argue that Robinson's framework allows one to dig deeper into set-theoretic resources than is common in Archimedean mathematics. This can potentially prove theorems not accessible by standard methods, undermining Halmos' criticisms. Keywords: Archimedean axiom; bridge between discrete and continuous mathematics; hyperreals; incomparable quantities; indispensability; infinity; mathematical realism; Robinson.Comment: 15 pages, to appear in Logica Universali

    Equivariant quantum cohomology and Yang-Baxter algebras

    Full text link
    There are two intriguing statements regarding the quantum cohomology of partial flag varieties. The first one relates quantum cohomology to the affinisation of Lie algebras and the homology of the affine Grassmannian, the second one connects it with the geometry of quiver varieties. The connection with the affine Grassmannian was first discussed in unpublished work of Peterson and subsequently proved by Lam and Shimozono. The second development is based on recent works of Nekrasov, Shatashvili and of Maulik, Okounkov relating the quantum cohomology of Nakajima varieties with integrable systems and quantum groups. In this article we explore for the simplest case, the Grassmannian, the relation between the two approaches. We extend the definition of the integrable systems called vicious and osculating walkers to the equivariant setting and show that these models have simple expressions in a particular representation of the affine nil-Hecke ring. We compare this representation with the one introduced by Kostant and Kumar and later used by Peterson in his approach to Schubert calculus. We reveal an underlying quantum group structure in terms of Yang-Baxter algebras and relate them to Schur-Weyl duality. We also derive new combinatorial results for equivariant Gromov-Witten invariants such as an explicit determinant formula.Comment: 60 pages, 11 figures; v2: statement about Schur-Weyl duality added and introduction slightly rewritten, see last paragraph on page 2 and first paragraph on page 3 as well as Theorem 1.3 in the introductio

    Halmazelmélet; Partíció kalkulus, Végtelen gráfok elmélete = Set Theory; Partition Calculus , Theory of Infinite Graphs

    Get PDF
    Előzetes tervünknek megfelelően a halmazelmélet alábbi területein végeztünk kutatást és értünk el számos eredményt: I. Kombinatorika II. A valósak számsosságinvariánsai és ideálelmélet III. Halmazelméleti topológia Ezek mellett Sági Gábor kiterjedt kutatást végzett a modellelmélet területén , amely eredmények kapcsolódnak a kombinatorikához is. Eredményeinket 38 közleményben publikáltuk, amelyek majdnem mind az adott terület vezető nemzetközi lapjaiban jelentel meg (5 cikket csak benyújtottunk). Számos nemzetközi konferencián is résztvettünk, és hárman közűlünk (Juhász, Sádi, Soukup) plenáris/meghívott előadók voltak számos alkalommal. | Following our research plan, we have mainly done research -- and established a number of significant results -- in several areas of set theory: I. Combinatorics II. Cardinal invariants of the continuum and ideal theory III. Set-theoretic topology In addition to these, G. Sági has done extended research in model theory that had ramifications to combinatorics. We presented our results in 38 publications, almost all of which appeared or will appear in the leading international journals of these fields (5 of these papers have been submitted but not accepted as yet). We also participated at a number of international conferences, three of us (Juhász, Sági, Soukup) as plenary and/or invited speakers at many of these

    Changing a semantics: opportunism or courage?

    Full text link
    The generalized models for higher-order logics introduced by Leon Henkin, and their multiple offspring over the years, have become a standard tool in many areas of logic. Even so, discussion has persisted about their technical status, and perhaps even their conceptual legitimacy. This paper gives a systematic view of generalized model techniques, discusses what they mean in mathematical and philosophical terms, and presents a few technical themes and results about their role in algebraic representation, calibrating provability, lowering complexity, understanding fixed-point logics, and achieving set-theoretic absoluteness. We also show how thinking about Henkin's approach to semantics of logical systems in this generality can yield new results, dispelling the impression of adhocness. This paper is dedicated to Leon Henkin, a deep logician who has changed the way we all work, while also being an always open, modest, and encouraging colleague and friend.Comment: 27 pages. To appear in: The life and work of Leon Henkin: Essays on his contributions (Studies in Universal Logic) eds: Manzano, M., Sain, I. and Alonso, E., 201
    • …
    corecore