1,648 research outputs found

    Broadcasting Automata and Patterns on Z^2

    Get PDF
    The Broadcasting Automata model draws inspiration from a variety of sources such as Ad-Hoc radio networks, cellular automata, neighbourhood se- quences and nature, employing many of the same pattern forming methods that can be seen in the superposition of waves and resonance. Algorithms for broad- casting automata model are in the same vain as those encountered in distributed algorithms using a simple notion of waves, messages passed from automata to au- tomata throughout the topology, to construct computations. The waves generated by activating processes in a digital environment can be used for designing a vari- ety of wave algorithms. In this chapter we aim to study the geometrical shapes of informational waves on integer grid generated in broadcasting automata model as well as their potential use for metric approximation in a discrete space. An explo- ration of the ability to vary the broadcasting radius of each node leads to results of categorisations of digital discs, their form, composition, encodings and gener- ation. Results pertaining to the nodal patterns generated by arbitrary transmission radii on the plane are explored with a connection to broadcasting sequences and ap- proximation of discrete metrics of which results are given for the approximation of astroids, a previously unachievable concave metric, through a novel application of the aggregation of waves via a number of explored functions

    From videocassette to video stream: Issues involved in reā€purposing an existing educational video

    Get PDF
    Conventional video recordings can be converted into video streams but the process can be complex and problematic. The authorsā€™ experience of reā€purposing an existing video, Back Care for Health Professionals, for streaming is used to illustrate what was involved and to highlight the important issues. Financial, legal, technical and pedagogic issues are examined

    Help I'm surrounded

    Get PDF
    A dimly lit auditorium, the smell of popcorn and hot-dogs accompanied by the sound of fizzy drinks slurped through straws; the lights dim and a hush of expectation descends, sound fades in from all around, drawing the audience into the illusion of another reality. This is the world of the cinema, but is it possible to recreate this cinematic surround sound experience in the home? In order to address this question it is necessary to understand what is meant by "cinematic" surround sound and to consider some of the challenges faced by those seeking to translate it to the home environment. This article examines these issues through an exploration of the development of surround sound in the cinema and its transference to the home and concludes with a tentative look towards possible future developments

    An RLL code design that maximises channel utilisation

    Get PDF
    Comprehensive (d,k) sequences study is presented, complemented with the design of a new, efficient, Run-Length Limited (RLL) code. The new code belongs to group of constrained coding schemas with a coding rate of R = 2/5 and with the minimum run length between two successive transitions equal to 4. Presented RLL (4, oo) code uses channel capacity highly efficiently, with 98.7% and consequently it achieves a high-density rate of DR = 2.0. It is implying that two bits can be recorded, or transmitted with one transition. Coding techniques based on the presented constraints and the selected coding rate have better efficiency than many other currently used codes for high density optical recording and transmission

    Pattern formations with discrete waves and broadcasting sequences

    Get PDF
    This thesis defines the Broadcasting Automata model as an intuitive and complete method of distributed pattern formation, partitioning and distributed geometric computation. The system is examined within the context of Swarm Robotics whereby large numbers of minimally complex robots may be deployed in a variety of circumstances and settings with goals as diverse as from toxic spill containment to geological survey. Accomplishing these tasks with such simplistic machines is complex and has been deconstructed in to sub-problems considered to be signif- icant because, when composed, they are able to solve much more complex tasks. Sub-problems have been identified, and studied as pattern formation, leader elec- tion, aggregation, chain formation, hole avoidance, foraging, path formation, etc. The Broadcasting Automata draws inspiration from a variety of sources such as Ad-Hoc radio networks, cellular automata, neighbourhood sequences and nature, employing many of the same pattern forming methods that can be seen in the superposition of waves and resonance. To this end the thesis gives an in depth analysis of the primitive tools of the Broadcasting Automata model, nodal patterns, where waves from a variety of transmitters can in linear time construct partitions and patterns with results per- taining to the numbers of different patterns and partitions, along with the number of those that differ, are given. Using these primitives of the model a variety of algorithms are given including leader election, through the location of the centre of a discrete disc, and a solution to the Firing Squad Synchronisation problem. These problems are solved linearly.An exploration of the ability to vary the broadcasting radius of each node leads to results of categorisations of digital discs, their form, composition, encodings and generation. Results pertaining to the nodal patterns generated by arbitrary transmission radii on the plane are explored with a connection to broadcasting sequences and approximation of discrete metrics of which results are given for the approximation of astroids, a previously unachievable concave metric, through a novel application of the aggregation of waves via a number of explored functions. Broadcasting Automata aims to place itself as a robust and complete linear time and large scale system for the construction of patterns, partitions and geometric computation. Algorithms and methodologies are given for the solution of problems within Swarm Robotics and an extension to neighbourhood sequences. It is also hoped that it opens up a new area of research that can expand many older and more mature works

    Exploring the future of compact disc-interactive

    Get PDF
    None provided

    A powerful heuristic for telephone gossiping

    Get PDF
    A refined heuristic for computing schedules for gossiping in the telephone model is presented. The heuristic is fast: for a network with n nodes and m edges, requiring R rounds for gossiping, the running time is O(R n log(n) m) for all tested classes of graphs. This moderate time consumption allows to compute gossiping schedules for networks with more than 10,000 PUs and 100,000 connections. The heuristic is good: in practice the computed schedules never exceed the optimum by more than a few rounds. The heuristic is versatile: it can also be used for broadcasting and more general information dispersion patterns. It can handle both the unit-cost and the linear-cost model. Actually, the heuristic is so good, that for CCC, shuffle-exchange, butterfly de Bruijn, star and pancake networks the constructed gossiping schedules are better than the best theoretically derived ones. For example, for gossiping on a shuffle-exchange network with 2^{13} PUs, the former upper bound was 49 rounds, while our heuristic finds a schedule requiring 31 rounds. Also for broadcasting the heuristic improves on many formerly known results. A second heuristic, works even better for CCC, butterfly, star and pancake networks. For example, with this heuristic we found that gossiping on a pancake network with 7! PUs can be performed in 15 rounds, 2 fewer than achieved by the best theoretical construction. This second heuristic is less versatile than the first, but by refined search techniques it can tackle even larger problems, the main limitation being the storage capacity. Another advantage is that the constructed schedules can be represented concisely
    • ā€¦
    corecore