1,038 research outputs found

    Handwritten Character Recognition of South Indian Scripts: A Review

    Full text link
    Handwritten character recognition is always a frontier area of research in the field of pattern recognition and image processing and there is a large demand for OCR on hand written documents. Even though, sufficient studies have performed in foreign scripts like Chinese, Japanese and Arabic characters, only a very few work can be traced for handwritten character recognition of Indian scripts especially for the South Indian scripts. This paper provides an overview of offline handwritten character recognition in South Indian Scripts, namely Malayalam, Tamil, Kannada and Telungu.Comment: Paper presented on the "National Conference on Indian Language Computing", Kochi, February 19-20, 2011. 6 pages, 5 figure

    Canonical skeletons for shape matching

    Get PDF

    Wavelet Coefficients and Gradient Direction for Offline Recognition of Isolated Malayalam Characters

    Get PDF
    This work attempt to use the wavelet transform coefficients combined with image gradient direction as feature vector for the recognition of isolated handwritten Malayalam characters. It has been established that the number of zero crossings in wavelet transform distinctly characterizes an image. This property has been exploited in this work for the recognition of handwritten characters. The images of 71 characters in Malayalam are considered for the recognition purpose. The segmented image of the symbols are thinned and smoothed for further processing. The feature vector proposed in this work is the combination of number of zero crossings in two level Daubechies (Db4) wavelet transform and gradient direction of the image mapped to twelve regions with each region having 30 degree span. A two level Db4 wavelet transform is applied on each processed symbol and the number of zero crossings in each of 20 sub images are counted and recorded. Gradient direction is combined with this to form the feature vector. Multilayer Perceptron classifier is used for classification. We have obtained an accuracy of 98.8%

    Human Metaphase Chromosome Analysis using Image Processing

    Get PDF
    Development of an effective human metaphase chromosome analysis algorithm can optimize expert time usage by increasing the efficiency of many clinical diagnosis processes. Although many methods exist in the literature, they are only applicable for limited morphological variations and are specific to the staining method used during cell preparation. They are also highly influenced by irregular chromosome boundaries as well as the presence of artifacts such as premature sister chromatid separation. Therefore an algorithm is proposed in this research which can operate with any morphological variation of the chromosome across images from multiple staining methods. The proposed algorithm is capable of calculating the segmentation outline, the centerline (which gives the chromosome length), partitioning of the telomere regions and the centromere location of a given chromosome. The algorithm also detects and corrects for the sister chromatid separation artifact in metaphase cell images. A metric termed the Candidate Based Centromere Confidence (CBCC) is proposed to accompany each centromere detection result of the proposed method, giving an indication of the confidence the algorithm has on a given localization. The proposed method was first tested for the ability of calculating an accurate width profile against a centerline based method [1] using 226 chromosomes. A statistical analysis of the centromere detection error values proved that the proposed method can accurately locate centromere locations with statistical significance. Furthermore, the proposed method performed more consistently across different staining methods in comparison to the centerline based approach. When tested with a larger data set of 1400 chromosomes collected from a set of DAPI (4\u27,6-diamidino-2-phenylindole) and Giemsa stained cell images, the proposed candidate based centromere detection algorithm was able to accurately localize 1220 centromere locations yielding a detection accuracy of 87%

    Real-time 3D human body pose estimation from monocular RGB input

    Get PDF
    Human motion capture finds extensive application in movies, games, sports and biomechanical analysis. However, existing motion capture solutions require cumbersome external and/or on-body instrumentation, or use active sensors with limits on the possible capture volume dictated by power consumption. The ubiquity and ease of deployment of RGB cameras makes monocular RGB based human motion capture an extremely useful problem to solve, which would lower the barrier-to entry for content creators to employ motion capture tools, and enable newer applications of human motion capture. This thesis demonstrates the first real-time monocular RGB based motion-capture solutions that work in general scene settings. They are based on developing neural network based approaches to address the ill-posed problem of estimating 3D human pose from a single RGB image, in combination with model based fitting. In particular, the contributions of this work make advances towards three key aspects of real-time monocular RGB based motion capture, namely speed, accuracy, and the ability to work for general scenes. New training datasets are proposed, for single-person and multi-person scenarios, which, together with the proposed transfer learning based training pipeline, allow learning based approaches to be appearance invariant. The training datasets are accompanied by evaluation benchmarks with multiple avenues of fine-grained evaluation. The evaluation benchmarks differ visually from the training datasets, so as to promote efforts towards solutions that generalize to in-the-wild scenes. The proposed task formulations for the single-person and multi-person case allow higher accuracy, and incorporate additional qualities such as occlusion robustness, that are helpful in the context of a full motion capture solution. The multi-person formulations are designed to have a nearly constant inference time regardless of the number of subjects in the scene, and combined with contributions towards fast neural network inference, enable real-time 3D pose estimation for multiple subjects. Combining the proposed learning-based approaches with a model-based kinematic skeleton fitting step provides temporally stable joint angle estimates, which can be readily employed for driving virtual characters.Menschlicher Motion Capture findet umfangreiche Anwendung in Filmen, Spielen, Sport und biomechanischen Analysen. Bestehende Motion-Capture-Lösungen erfordern jedoch umstĂ€ndliche externe Instrumentierung und / oder Instrumentierung am Körper, oder verwenden aktive Sensoren deren begrenztes Erfassungsvolumen durch den Stromverbrauch begrenzt wird. Die Allgegenwart und einfache Bereitstellung von RGB-Kameras macht die monokulare RGB-basierte Motion Capture zu einem Ă€ußerst nĂŒtzlichen Problem. Dies wĂŒrde die Eintrittsbarriere fĂŒr Inhaltsersteller fĂŒr die Verwendung der Motion Capture verringern und neuere Anwendungen dieser Tools zur Analyse menschlicher Bewegungen ermöglichen. Diese Arbeit zeigt die ersten monokularen RGB-basierten Motion-Capture-Lösungen in Echtzeit, die in allgemeinen Szeneneinstellungen funktionieren. Sie basieren auf der Entwicklung neuronaler netzwerkbasierter AnsĂ€tze, um das schlecht gestellte Problem der SchĂ€tzung der menschlichen 3D-Pose aus einem einzelnen RGB-Bild in Kombination mit einer modellbasierten Anpassung anzugehen. Insbesondere machen die BeitrĂ€ge dieser Arbeit Fortschritte in Richtung drei SchlĂŒsselaspekte der monokularen RGB-basierten Echtzeit-Bewegungserfassung, nĂ€mlich Geschwindigkeit, Genauigkeit und die FĂ€higkeit, fĂŒr allgemeine Szenen zu arbeiten. Es werden neue TrainingsdatensĂ€tze fĂŒr Einzel- und Mehrpersonen-Szenarien vorgeschlagen, die zusammen mit der vorgeschlagenen Trainingspipeline, die auf Transferlernen basiert, ermöglichen, dass lernbasierte AnsĂ€tze nicht von Unterschieden im Erscheinungsbild des Bildes beeinflusst werden. Die TrainingsdatensĂ€tze werden von Bewertungsbenchmarks mit mehreren Möglichkeiten einer feinkörnigen Bewertung begleitet. Die angegebenen Benchmarks unterscheiden sich visuell von den Trainingsaufzeichnungen, um die Entwicklung von Lösungen zu fördern, die sich auf verschiedene Szenen verallgemeinern lassen. Die vorgeschlagenen Aufgabenformulierungen fĂŒr den Einzel- und Mehrpersonenfall ermöglichen eine höhere Genauigkeit und enthalten zusĂ€tzliche Eigenschaften wie die Robustheit der Okklusion, die im Kontext einer vollstĂ€ndigen Bewegungserfassungslösung hilfreich sind. Die Mehrpersonenformulierungen sind so konzipiert, dass sie unabhĂ€ngig von der Anzahl der Subjekte in der Szene eine nahezu konstante Inferenzzeit haben. In Kombination mit BeitrĂ€gen zur schnellen Inferenz neuronaler Netze ermöglichen sie eine 3D-PosenschĂ€tzung in Echtzeit fĂŒr mehrere Subjekte. Die Kombination der vorgeschlagenen lernbasierten AnsĂ€tze mit einem modellbasierten kinematischen Skelettanpassungsschritt liefert zeitlich stabile GelenkwinkelschĂ€tzungen, die leicht zum Ansteuern virtueller Charaktere verwendet werden können
    • 

    corecore