2,625 research outputs found

    High-Dimensional Design Evaluations For Self-Aligning Geometries

    Get PDF
    Physical connectors with self-aligning geometry aid in the docking process for many robotic and automatic control systems such as robotic self-reconfiguration and air-to-air refueling. This self-aligning geometry provides a wider range of acceptable error tolerance in relative pose between the two rigid objects, increasing successful docking chances. In a broader context, mechanical alignment properties are also useful for other cases such as foot placement and stability, grasping or manipulation. Previously, computational limitations and costly algorithms prevented high-dimensional analysis. The algorithms presented in this dissertation will show a reduced computational time and improved resolution for this kind of problem. This dissertation reviews multiple methods for evaluating modular robot connector geometries as a case study in determining alignment properties. Several metrics are introduced in terms of the robustness of the alignment to errors across the full dimensional range of possible offsets. Algorithms for quantifying error robustness will be introduced and compared in terms of accuracy, reliability, and computational cost. Connector robustness is then compared across multiple design parameters to find trends in alignment behavior. Methods developed and compared include direct simulation and contact space analysis algorithms (geometric by a \u27pre-partitioning\u27 method, and discrete by flooding). Experimental verification for certain subsets is also performed to confirm the results. By evaluating connectors using these algorithms we obtain concrete metric values. We then quantitatively compare their alignment capabilities in either SE(2) or SE(3) under a pseudo-static assumption

    NASA Tech Briefs Index, 1977, volume 2, numbers 1-4

    Get PDF
    Announcements of new technology derived from the research and development activities of NASA are presented. Abstracts, and indexes for subject, personal author, originating center, and Tech Brief number are presented for 1977

    The 727 approach energy management system avionics specification (preliminary)

    Get PDF
    Hardware and software requirements for an Approach Energy Management System (AEMS) consisting of an airborne digital computer and cockpit displays are presented. The displays provide the pilot with a visual indication of when to manually operate the gear, flaps, and throttles during a delayed flap approach so as to reduce approach time, fuel consumption, and community noise. The AEMS is an independent system that does not interact with other navigation or control systems, and is compatible with manually flown or autopilot coupled approaches. Operational use of the AEMS requires a DME ground station colocated with the flight path reference

    Conceptual design and feasibility evaluation model of a 10 to the 8th power bit oligatomic mass memory. Volume 1: Conceptual design

    Get PDF
    The oligatomic (mirror) thin film memory technology is a suitable candidate for general purpose spaceborne applications in the post-1975 time frame. Capacities of around 10 to the 8th power bits can be reliably implemented with systems designed around a 335 million bit module. The recommended mode was determined following an investigation of implementation sizes ranging from an 8,000,000 to 100,000,000 bits per module. Cost, power, weight, volume, reliability, maintainability and speed were investigated. The memory includes random access, NDRO, SEC-DED, nonvolatility, and dual interface characteristics. The applications most suitable for the technology are those involving a large capacity with high speed (no latency), nonvolatility, and random accessing

    Addressing Tasks Through Robot Adaptation

    Get PDF
    Developing flexible, broadly capable systems is essential for robots to move out of factories and into our daily lives, functioning as responsive agents that can handle whatever the world throws at them. This dissertation focuses on two kinds of robot adaptation. Modular self-reconfigurable robots (MSRR) adapt to the requirements of their task and environments by transforming themselves. By rearranging the connective structure of their component robot modules, these systems can assume different morphologies: for example, a cluster of modules might configure themselves into a car to maneuver on flat ground, a snake to climb stairs, or an arm to pick and place objects. Conversely, environment augmentation is a strategy in which the robot transforms its environment to meet its own needs, adding physical structures that allow it to overcome obstacles. In both areas, the presented work includes elements of hardware design, algorithms, and integrated systems, with the common goal of establishing these methods of adaptation as viable strategies to address tasks. The research takes a systems-level view of robotics, placing particular emphasis on experimental validation in hardware

    A study of low cost approaches to scientific experiment implementation for shuttle launched and serviced automated spacecraft

    Get PDF
    Cost reductions that can be obtained in experiment instrumentation by the use of standardized electronics and by the relaxation of instrument reliability requirements are studied. The feasibility of using standardized equipment for experiment instrumentation is assessed and a system design approach that most effectively incorporates standardized equipment is developed. The level and form of modularization that is appropriate for the standardized equipment is determined. Mission assurance aspects of instrument development are examined to determine the cost reductions that might be derived from the relaxation of reliability requirements and to formulate a systematic approach to the optimization of mission assurance cost reductions. The results of the analyses are applied to a representative model HEAO payload in order to provide a concrete example of the cost reductions that can be achieved by a standardized approach to the instrument electronics

    Voyager spacecraft phase B, task D. Volume 2 - System description. Book 5 - Final report

    Get PDF
    Voyager spacecraft design standards, and operational support and mission-dependent equipment requirement

    Apollo experience report guidance and control systems: Primary guidance, navigation, and control system development

    Get PDF
    The primary guidance, navigation, and control systems for both the lunar module and the command module are described. Development of the Apollo primary guidance systems is traced from adaptation of the Polaris Mark II system through evolution from Block I to Block II configurations; the discussion includes design concepts used, test and qualification programs performed, and major problems encountered. The major subsystems (inertial, computer, and optical) are covered. Separate sections on the inertial components (gyroscopes and accelerometers) are presented because these components represent a major contribution to the success of the primary guidance, navigation, and control system

    Universal computer test stand (recommended computer test requirements)

    Get PDF
    Techniques are considered which would be used to characterize areospace computers with the space shuttle application as end usage. The system level digital problems which have been encountered and documented are surveyed. From the large cross section of tests, an optimum set is recommended that has a high probability of discovering documented system level digital problems within laboratory environments. Defined is a baseline hardware, software system which is required as a laboratory tool to test aerospace computers. Hardware and software baselines and additions necessary to interface the UTE to aerospace computers for test purposes are outlined

    Design of the Electronics Subsystem for a High-Resolution Electro-Optical Payload Using Systems Engineering Approach

    Get PDF
    Satellite imagers, in contrast to commercial imagers, demand exceptional performance and operate under harsh conditions. The camera is an essential part of an Earth Observation Electro Optical (EO) payload that is designed in response to needs such as military demands, changes in world politics, inception of new technologies, operational requirements and experiments. As one of the key subsystems, the Imager Electronics Subsystem of a high-resolution EO payload plays very important role in the accomplishment of mission objectives and payload goals. Hence, these Electronics Subsystems require a special design approach optimised for their needs and meticulous characterizations of high-resolution space applications. This dissertation puts forward the argument that the system being studied is a subsystem of a larger system and that systems engineering principles can be applied to the subsystem design process also. The aim of this dissertation is to design the Imager Electronics Subsystem of a high-resolution Electro Optical Payload using a systems engineering approach to represent a logical integration and test flow using the space industry guidelines. The Imager Electronics Subsystem consists of group of elements forming the functional chain from the Image Sensors on the Focal Plane down to electrical interface to the Data Handling Unit and power interface of the satellite. This subsystem is responsible for collecting light in different spectral bands, converting this light to data of different spectral bands from image sensors for high-resolution imaging, performing operations for aligning, tagging and multiplexing along with incorporating internal and external interfaces
    corecore