23 research outputs found

    Stochastic hybrid system : modelling and verification

    Get PDF
    Hybrid systems now form a classical computational paradigm unifying discrete and continuous system aspects. The modelling, analysis and verification of these systems are very difficult. One way to reduce the complexity of hybrid system models is to consider randomization. The need for stochastic models has actually multiple motivations. Usually, when building models complete information is not available and we have to consider stochastic versions. Moreover, non-determinism and uncertainty are inherent to complex systems. The stochastic approach can be thought of as a way of quantifying non-determinism (by assigning a probability to each possible execution branch) and managing uncertainty. This is built upon to the - now classical - approach in algorithmics that provides polynomial complexity algorithms via randomization. In this thesis we investigate the stochastic hybrid systems, focused on modelling and analysis. We propose a powerful unifying paradigm that combines analytical and formal methods. Its applications vary from air traffic control to communication networks and healthcare systems. The stochastic hybrid system paradigm has an explosive development. This is because of its very powerful expressivity and the great variety of possible applications. Each hybrid system model can be randomized in different ways, giving rise to many classes of stochastic hybrid systems. Moreover, randomization can change profoundly the mathematical properties of discrete and continuous aspects and also can influence their interaction. Beyond the profound foundational and semantics issues, there is the possibility to combine and cross-fertilize techniques from analytic mathematics (like optimization, control, adaptivity, stability, existence and uniqueness of trajectories, sensitivity analysis) and formal methods (like bisimulation, specification, reachability analysis, model checking). These constitute the major motivations of our research. We investigate new models of stochastic hybrid systems and their associated problems. The main difference from the existing approaches is that we do not follow one way (based only on continuous or discrete mathematics), but their cross-fertilization. For stochastic hybrid systems we introduce concepts that have been defined only for discrete transition systems. Then, techniques that have been used in discrete automata now come in a new analytical fashion. This is partly explained by the fact that popular verification methods (like theorem proving) can hardly work even on probabilistic extensions of discrete systems. When the continuous dimension is added, the idea to use continuous mathematics methods for verification purposes comes in a natural way. The concrete contribution of this thesis has four major milestones: 1. A new and a very general model for stochastic hybrid systems; 2. Stochastic reachability for stochastic hybrid systems is introduced together with an approximating method to compute reach set probabilities; 3. Bisimulation for stochastic hybrid systems is introduced and relationship with reachability analysis is investigated. 4. Considering the communication issue, we extend the modelling paradigm

    Extensions of Positive Definite Functions: Applications and Their Harmonic Analysis

    Full text link
    We study two classes of extension problems, and their interconnections: (i) Extension of positive definite (p.d.) continuous functions defined on subsets in locally compact groups GG; (ii) In case of Lie groups, representations of the associated Lie algebras La(G)La\left(G\right) by unbounded skew-Hermitian operators acting in a reproducing kernel Hilbert space (RKHS) HF\mathscr{H}_{F}. Why extensions? In science, experimentalists frequently gather spectral data in cases when the observed data is limited, for example limited by the precision of instruments; or on account of a variety of other limiting external factors. Given this fact of life, it is both an art and a science to still produce solid conclusions from restricted or limited data. In a general sense, our monograph deals with the mathematics of extending some such given partial data-sets obtained from experiments. More specifically, we are concerned with the problems of extending available partial information, obtained, for example, from sampling. In our case, the limited information is a restriction, and the extension in turn is the full positive definite function (in a dual variable); so an extension if available will be an everywhere defined generating function for the exact probability distribution which reflects the data; if it were fully available. Such extensions of local information (in the form of positive definite functions) will in turn furnish us with spectral information. In this form, the problem becomes an operator extension problem, referring to operators in a suitable reproducing kernel Hilbert spaces (RKHS). In our presentation we have stressed hands-on-examples. Extensions are almost never unique, and so we deal with both the question of existence, and if there are extensions, how they relate back to the initial completion problem.Comment: 235 pages, 42 figures, 7 tables. arXiv admin note: substantial text overlap with arXiv:1401.478

    ISIPTA'07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications

    Get PDF
    B

    Views from a peak:Generalisations and descriptive set theory

    Get PDF
    This dissertation has two major threads, one is mathematical, namely descriptive set theory, the other is philosophical, namely generalisation in mathematics. Descriptive set theory is the study of the behaviour of definable subsets of a given structure such as the real numbers. In the core mathematical chapters, we provide mathematical results connecting descriptive set theory and generalised descriptive set theory. Using these, we give a philosophical account of the motivations for, and the nature of, generalisation in mathematics.In Chapter 3, we stratify set theories based on this descriptive complexity. The axiom of countable choice for reals is one of the most basic fragments of the axiom of choice needed in many parts of mathematics. Descriptive choice principles are a further stratification of this fragment by the descriptive complexity of the sets. We provide a separation technique for descriptive choice principles based on Jensen forcing. Our results generalise a theorem by Kanovei.Chapter 4 gives the essentials of a generalised real analysis, that is a real analysis on generalisations of the real numbers to higher infinities. This builds on work by Galeotti and his coauthors. We generalise classical theorems of real analysis to certain sets of functions, strengthening continuity, and disprove other classical theorems. We also show that a certain cardinal property, the tree property, is equivalent to the Extreme Value Theorem for a set of functions which generalize the continuous functions.The question of Chapter 5 is whether a robust notion of infinite sums can be developed on generalisations of the real numbers to higher infinities. We state some incompatibility results, which suggest not. We analyse several candidate notions of infinite sum, both from the literature and more novel, and show which of the expected properties of a notion of sum they fail.In Chapter 6, we study the descriptive set theory arising from a generalization of topology, κ-topology, which is used in the previous two chapters. We show that the theory is quite different from that of the standard (full) topology. Differences include a collapsing Borel hierarchy, a lack of universal or complete sets, Lebesgue’s ‘great mistake’ holds (projections do not increase complexity), a strict hierarchy of notions of analyticity, and a failure of Suslin’s theorem.Lastly, in Chapter 7, we give a philosophical account of the nature of generalisation in mathematics, and describe the methodological reasons that mathematicians generalise. In so doing, we distinguish generalisation from other processes of change in mathematics, such as abstraction and domain expansion. We suggest a semantic account of generalisation, where two pieces of mathematics constitute a generalisation if they have a certain relation of content, along with an increased level of generality
    corecore