64,187 research outputs found

    Geometric Numerical Integration (hybrid meeting)

    Get PDF
    The topics of the workshop included interactions between geometric numerical integration and numerical partial differential equations; geometric aspects of stochastic differential equations; interaction with optimisation and machine learning; new applications of geometric integration in physics; problems of discrete geometry, integrability, and algebraic aspects

    Renewal theorems for a class of processes with dependent interarrival times and applications in geometry

    Full text link
    Renewal theorems are developed for point processes with interarrival times Wn=ξ(Xn+1Xn)W_n=\xi(X_{n+1}X_n\cdots), where (Xn)nZ(X_n)_{n\in\mathbb Z} is a stochastic process with finite state space Σ\Sigma and ξ ⁣:ΣAR\xi\colon\Sigma_A\to\mathbb R is a H\"older continuous function on a subset ΣAΣN\Sigma_A\subset\Sigma^{\mathbb N}. The theorems developed here unify and generalise the key renewal theorem for discrete measures and Lalley's renewal theorem for counting measures in symbolic dynamics. Moreover, they capture aspects of Markov renewal theory. The new renewal theorems allow for direct applications to problems in fractal and hyperbolic geometry; for instance, results on the Minkowski measurability of self-conformal sets are deduced. Indeed, these geometric problems motivated the development of the renewal theorems.Comment: 2 figure

    Dynamical Evolution in Noncommutative Discrete Phase Space and the Derivation of Classical Kinetic Equations

    Full text link
    By considering a lattice model of extended phase space, and using techniques of noncommutative differential geometry, we are led to: (a) the conception of vector fields as generators of motion and transition probability distributions on the lattice; (b) the emergence of the time direction on the basis of the encoding of probabilities in the lattice structure; (c) the general prescription for the observables' evolution in analogy with classical dynamics. We show that, in the limit of a continuous description, these results lead to the time evolution of observables in terms of (the adjoint of) generalized Fokker-Planck equations having: (1) a diffusion coefficient given by the limit of the correlation matrix of the lattice coordinates with respect to the probability distribution associated with the generator of motion; (2) a drift term given by the microscopic average of the dynamical equations in the present context. These results are applied to 1D and 2D problems. Specifically, we derive: (I) The equations of diffusion, Smoluchowski and Fokker-Planck in velocity space, thus indicating the way random walk models are incorporated in the present context; (II) Kramers' equation, by further assuming that, motion is deterministic in coordinate spaceComment: LaTeX2e, 40 pages, 1 Postscript figure, uses package epsfi

    Imprint of quantum gravity in the dimension and fabric of spacetime

    Full text link
    We here conjecture that two much-studied aspects of quantum gravity, dimensional flow and spacetime fuzziness, might be deeply connected. We illustrate the mechanism, providing first evidence in support of our conjecture, by working within the framework of multifractional theories, whose key assumption is an anomalous scaling of the spacetime dimension in the ultraviolet and a slow change of the dimension in the infrared. This sole ingredient is enough to produce a scale-dependent deformation of the integration measure with also a fuzzy spacetime structure. We also compare the multifractional correction to lengths with the types of Planckian uncertainty for distance and time measurements that was reported in studies combining quantum mechanics and general relativity heuristically. This allows us to fix two free parameters of the theory and leads, in one of the scenarios we contemplate, to a value of the ultraviolet dimension which had already found support in other quantum-gravity analyses. We also formalize a picture such that fuzziness originates from a fundamental discrete scale invariance at short scales and corresponds to a stochastic spacetime geometry.Comment: 6 pages; v2: phenomenology section adde

    Discrete Dynamical Systems: A Brief Survey

    Get PDF
    Dynamical system is a mathematical formalization for any fixed rule that is described in time dependent fashion. The time can be measured by either of the number systems - integers, real numbers, complex numbers. A discrete dynamical system is a dynamical system whose state evolves over a state space in discrete time steps according to a fixed rule. This brief survey paper is concerned with the part of the work done by José Sousa Ramos [2] and some of his research students. We present the general theory of discrete dynamical systems and present results from applications to geometry, graph theory and synchronization
    corecore