83,642 research outputs found

    On the algorithmic complexity of twelve covering and independence parameters of graphs

    Get PDF
    The definitions of four previously studied parameters related to total coverings and total matchings of graphs can be restricted, thereby obtaining eight parameters related to covering and independence, each of which has been studied previously in some form. Here we survey briefly results concerning total coverings and total matchings of graphs, and consider the aforementioned 12 covering and independence parameters with regard to algorithmic complexity. We survey briefly known results for several graph classes, and obtain new NP-completeness results for the minimum total cover and maximum minimal total cover problems in planar graphs, the minimum maximal total matching problem in bipartite and chordal graphs, and the minimum independent dominating set problem in planar cubic graphs

    Approximate solutions of hybrid stochastic pantograph equations with Levy jumps

    Get PDF
    We investigate a class of stochastic pantograph differential equations with Markovian switching and Levy jumps. We prove that the approximate solutions converge to the true solutions in 퐿 2 sense as well as in probability under local Lipschitz condition and generalize the results obtained by Fan et al. (2007), Milošević and Jovanović (2011), and Marion et al. (2002) to cover a class of more general stochastic pantograph differential equations with jumps. Finally, an illustrative example is given to demonstrate our established theory

    Approximate solutions of hybrid stochastic pantograph equations with Levy jumps

    Get PDF
    We investigate a class of stochastic pantograph differential equations with Markovian switching and Levy jumps. We prove that the approximate solutions converge to the true solutions in 퐿 2 sense as well as in probability under local Lipschitz condition and generalize the results obtained by Fan et al. (2007), Milošević and Jovanović (2011), and Marion et al. (2002) to cover a class of more general stochastic pantograph differential equations with jumps. Finally, an illustrative example is given to demonstrate our established theory

    Approximate solutions of hybrid stochastic pantograph equations with Levy jumps

    Get PDF
    We investigate a class of stochastic pantograph differential equations with Markovian switching and Levy jumps. We prove that the approximate solutions converge to the true solutions in 퐿 2 sense as well as in probability under local Lipschitz condition and generalize the results obtained by Fan et al. (2007), Milošević and Jovanović (2011), and Marion et al. (2002) to cover a class of more general stochastic pantograph differential equations with jumps. Finally, an illustrative example is given to demonstrate our established theory
    corecore