85,681 research outputs found

    Numerical Homogenization of the Acoustic Wave Equations with a Continuum of Scales

    Get PDF
    In this paper, we consider numerical homogenization of acoustic wave equations with heterogeneous coefficients, namely, when the bulk modulus and the density of the medium are only bounded. We show that under a Cordes type condition the second order derivatives of the solution with respect to harmonic coordinates are L2L^2 (instead H−1H^{-1} with respect to Euclidean coordinates) and the solution itself is in L∞(0,T,H2(Ω))L^{\infty}(0,T,H^2(\Omega)) (instead of L∞(0,T,H1(Ω))L^{\infty}(0,T,H^1(\Omega)) with respect to Euclidean coordinates). Then, we propose an implicit time stepping method to solve the resulted linear system on coarse spatial scales, and present error estimates of the method. It follows that by pre-computing the associated harmonic coordinates, it is possible to numerically homogenize the wave equation without assumptions of scale separation or ergodicity.Comment: 27 pages, 4 figures, Submitte

    Why Delannoy numbers?

    Full text link
    This article is not a research paper, but a little note on the history of combinatorics: We present here a tentative short biography of Henri Delannoy, and a survey of his most notable works. This answers to the question raised in the title, as these works are related to lattice paths enumeration, to the so-called Delannoy numbers, and were the first general way to solve Ballot-like problems. These numbers appear in probabilistic game theory, alignments of DNA sequences, tiling problems, temporal representation models, analysis of algorithms and combinatorial structures.Comment: Presented to the conference "Lattice Paths Combinatorics and Discrete Distributions" (Athens, June 5-7, 2002) and to appear in the Journal of Statistical Planning and Inference

    Mathematical models of avascular cancer

    Get PDF
    This review will outline a number of illustrative mathematical models describing the growth of avascular tumours. The aim of the review is to provide a relatively comprehensive list of existing models in this area and discuss several representative models in greater detail. In the latter part of the review, some possible future avenues of mathematical modelling of avascular tumour development are outlined together with a list of key questions

    A Blow-Up Criterion for the 3D Euler Equations Via the Euler-Voigt Inviscid Regularization

    Full text link
    We propose a new blow-up criterion for the 3D Euler equations of incompressible fluid flows, based on the 3D Euler-Voigt inviscid regularization. This criterion is similar in character to a criterion proposed in a previous work by the authors, but it is stronger, and better adapted for computational tests. The 3D Euler-Voigt equations enjoy global well-posedness, and moreover are more tractable to simulate than the 3D Euler equations. A major advantage of these new criteria is that one only needs to simulate the 3D Euler-Voigt, and not the 3D Euler equations, to test the blow-up criteria, for the 3D Euler equations, computationally

    Rainbow domination and related problems on some classes of perfect graphs

    Full text link
    Let k∈Nk \in \mathbb{N} and let GG be a graph. A function f:V(G)→2[k]f: V(G) \rightarrow 2^{[k]} is a rainbow function if, for every vertex xx with f(x)=∅f(x)=\emptyset, f(N(x))=[k]f(N(x)) =[k]. The rainbow domination number γkr(G)\gamma_{kr}(G) is the minimum of ∑x∈V(G)∣f(x)∣\sum_{x \in V(G)} |f(x)| over all rainbow functions. We investigate the rainbow domination problem for some classes of perfect graphs
    • …
    corecore