58,884 research outputs found

    Space-Time Isogeometric Analysis of Parabolic Evolution Equations

    Full text link
    We present and analyze a new stable space-time Isogeometric Analysis (IgA) method for the numerical solution of parabolic evolution equations in fixed and moving spatial computational domains. The discrete bilinear form is elliptic on the IgA space with respect to a discrete energy norm. This property together with a corresponding boundedness property, consistency and approximation results for the IgA spaces yields an a priori discretization error estimate with respect to the discrete norm. The theoretical results are confirmed by several numerical experiments with low- and high-order IgA spaces

    Space-time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting

    Full text link
    In this paper we present a novel arbitrary high order accurate discontinuous Galerkin (DG) finite element method on space-time adaptive Cartesian meshes (AMR) for hyperbolic conservation laws in multiple space dimensions, using a high order \aposteriori sub-cell ADER-WENO finite volume \emph{limiter}. Notoriously, the original DG method produces strong oscillations in the presence of discontinuous solutions and several types of limiters have been introduced over the years to cope with this problem. Following the innovative idea recently proposed in \cite{Dumbser2014}, the discrete solution within the troubled cells is \textit{recomputed} by scattering the DG polynomial at the previous time step onto a suitable number of sub-cells along each direction. Relying on the robustness of classical finite volume WENO schemes, the sub-cell averages are recomputed and then gathered back into the DG polynomials over the main grid. In this paper this approach is implemented for the first time within a space-time adaptive AMR framework in two and three space dimensions, after assuring the proper averaging and projection between sub-cells that belong to different levels of refinement. The combination of the sub-cell resolution with the advantages of AMR allows for an unprecedented ability in resolving even the finest details in the dynamics of the fluid. The spectacular resolution properties of the new scheme have been shown through a wide number of test cases performed in two and in three space dimensions, both for the Euler equations of compressible gas dynamics and for the magnetohydrodynamics (MHD) equations.Comment: Computers and Fluids 118 (2015) 204-22

    Combinatorics and Geometry of Transportation Polytopes: An Update

    Full text link
    A transportation polytope consists of all multidimensional arrays or tables of non-negative real numbers that satisfy certain sum conditions on subsets of the entries. They arise naturally in optimization and statistics, and also have interest for discrete mathematics because permutation matrices, latin squares, and magic squares appear naturally as lattice points of these polytopes. In this paper we survey advances on the understanding of the combinatorics and geometry of these polyhedra and include some recent unpublished results on the diameter of graphs of these polytopes. In particular, this is a thirty-year update on the status of a list of open questions last visited in the 1984 book by Yemelichev, Kovalev and Kravtsov and the 1986 survey paper of Vlach.Comment: 35 pages, 13 figure

    The Novikov Conjecture

    Full text link
    We give a survey on recent development of the Novikov conjecture and its applications to topological rigidity and non-rigidity. .Comment: 16 pages. Dedicated to Sergei Novikov on the occasion of his 80th birthday. To appear in Russian Math Survey, 2019. arXiv admin note: text overlap with arXiv:1811.0208

    Construction and analysis of higher order Galerkin variational integrators

    Full text link
    In this work we derive and analyze variational integrators of higher order for the structure-preserving simulation of mechanical systems. The construction is based on a space of polynomials together with Gauss and Lobatto quadrature rules to approximate the relevant integrals in the variational principle. The use of higher order schemes increases the accuracy of the discrete solution and thereby decrease the computational cost while the preservation properties of the scheme are still guaranteed. The order of convergence of the resulting variational integrators are investigated numerically and it is discussed which combination of space of polynomials and quadrature rules provide optimal convergence rates. For particular integrators the order can be increased compared to the Galerkin variational integrators previously introduced in Marsden & West 2001. Furthermore, linear stability properties, time reversibility, structure-preserving properties as well as efficiency for the constructed variational integrators are investigated and demonstrated by numerical examples.Comment: 27 page

    High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: viscous heat-conducting fluids and elastic solids

    Full text link
    This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov & Romenski, denoted as HPR model. In that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables. A very important key feature of the model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic evolution equation of the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the principles of thermodynamics. It is also fundamentally different from first order Maxwell-Cattaneo-type relaxation models based on extended irreversible thermodynamics. The connection between the HPR model and the classical hyperbolic-parabolic Navier-Stokes-Fourier theory is established via a formal asymptotic analysis in the stiff relaxation limit. From a numerical point of view, the governing partial differential equations are very challenging, since they form a large nonlinear hyperbolic PDE system that includes stiff source terms and non-conservative products. We apply the successful family of one-step ADER-WENO finite volume and ADER discontinuous Galerkin finite element schemes in the stiff relaxation limit, and compare the numerical results with exact or numerical reference solutions obtained for the Euler and Navier-Stokes equations. To show the universality of the model, the paper is rounded-off with an application to wave propagation in elastic solids

    Application of multivariate splines to discrete mathematics

    Full text link
    Using methods developed in multivariate splines, we present an explicit formula for discrete truncated powers, which are defined as the number of non-negative integer solutions of linear Diophantine equations. We further use the formula to study some classical problems in discrete mathematics as follows. First, we extend the partition function of integers in number theory. Second, we exploit the relation between the relative volume of convex polytopes and multivariate truncated powers and give a simple proof for the volume formula for the Pitman-Stanley polytope. Third, an explicit formula for the Ehrhart quasi-polynomial is presented.Comment: Box splines; Number of integer points in polytopes; Pitman-Stanley polytop

    Data-driven approximations of dynamical systems operators for control

    Full text link
    The Koopman and Perron Frobenius transport operators are fundamentally changing how we approach dynamical systems, providing linear representations for even strongly nonlinear dynamics. Although there is tremendous potential benefit of such a linear representation for estimation and control, transport operators are infinite-dimensional, making them difficult to work with numerically. Obtaining low-dimensional matrix approximations of these operators is paramount for applications, and the dynamic mode decomposition has quickly become a standard numerical algorithm to approximate the Koopman operator. Related methods have seen rapid development, due to a combination of an increasing abundance of data and the extensibility of DMD based on its simple framing in terms of linear algebra. In this chapter, we review key innovations in the data-driven characterization of transport operators for control, providing a high-level and unified perspective. We emphasize important recent developments around sparsity and control, and discuss emerging methods in big data and machine learning.Comment: 37 pages, 4 figure

    A three-level multi-continua upscaling method for flow problems in fractured porous media

    Full text link
    Traditional two level upscaling techniques suffer from a high offline cost when the coarse grid size is much larger than the fine grid size. Thus, multilevel methods are desirable for problems with complex heterogeneities and high contrast. In this paper, we propose a novel three-level upscaling method for flow problems in fractured porous media. Our method starts with a fine grid discretization for the system involving fractured porous media. In the next step, based on the fine grid model, we construct a nonlocal multi-continua upscaling (NLMC) method using an intermediate grid. The system resulting from NLMC gives solutions that have physical meaning. In order to enhance locality, the grid size of the intermediate grid needs to be relatively small, and this motivates using such an intermediate grid. However, the resulting NLMC upscaled system has a relatively large dimension. This motivates a further step of dimension reduction. In particular, we will apply the idea of the Generalized Multiscale Finite Element Method (GMsFEM) to the NLMC system to obtain a final reduced model. We present simulation results for a two-dimensional model problem with a large number of fractures using the proposed three-level method

    Distance sets of two subsets of vector spaces over finite fields

    Full text link
    We investigate the size of the distance set determined by two subsets of finite dimensional vector spaces over finite fields. A lower bound of the size is given explicitly in terms of cardinalities of the two subsets. As a result, we improve upon the results by Rainer Dietmann. In the case that one of the subsets is a product set, we obtain further improvement on the estimate.Comment: Changed title and structure, main results unchange
    corecore