95 research outputs found

    AdvCat: Domain-Agnostic Robustness Assessment for Cybersecurity-Critical Applications with Categorical Inputs

    Full text link
    Machine Learning-as-a-Service systems (MLaaS) have been largely developed for cybersecurity-critical applications, such as detecting network intrusions and fake news campaigns. Despite effectiveness, their robustness against adversarial attacks is one of the key trust concerns for MLaaS deployment. We are thus motivated to assess the adversarial robustness of the Machine Learning models residing at the core of these security-critical applications with categorical inputs. Previous research efforts on accessing model robustness against manipulation of categorical inputs are specific to use cases and heavily depend on domain knowledge, or require white-box access to the target ML model. Such limitations prevent the robustness assessment from being as a domain-agnostic service provided to various real-world applications. We propose a provably optimal yet computationally highly efficient adversarial robustness assessment protocol for a wide band of ML-driven cybersecurity-critical applications. We demonstrate the use of the domain-agnostic robustness assessment method with substantial experimental study on fake news detection and intrusion detection problems.Comment: IEEE BigData 202

    Towards understanding the robustness against evasion attack on categorical inputs

    Get PDF
    International audienceCharacterizing and assessing the adversarial risk of a classifier with categorical inputs has been a practically important yet rarely explored research problem. Conventional wisdom attributes the difficulty of solving the problem to its combinatorial nature. Previous research efforts tackling this problem are specific to use cases and heavily depend on domain knowledge. Such limitations prevent their general applicability in real-world applications with categorical data. Our study novelly shows that provably optimal adversarial robustness assessment is computationally feasible for any classifier with a mild smoothness constraint. We theoretically analyze the impact factors of adversarial vulnerability of a classifier with categorical inputs via an information-theoretic adversarial risk analysis. Corroborating these theoretical findings with a substantial experimental study over various real-world categorical datasets, we can empirically assess the impact of the key adversarial risk factors over a targeted learning system with categorical inputs

    Robust Counterfactual Explanations on Graph Neural Networks

    Full text link
    Massive deployment of Graph Neural Networks (GNNs) in high-stake applications generates a strong demand for explanations that are robust to noise and align well with human intuition. Most existing methods generate explanations by identifying a subgraph of an input graph that has a strong correlation with the prediction. These explanations are not robust to noise because independently optimizing the correlation for a single input can easily overfit noise. Moreover, they do not align well with human intuition because removing an identified subgraph from an input graph does not necessarily change the prediction result. In this paper, we propose a novel method to generate robust counterfactual explanations on GNNs by explicitly modelling the common decision logic of GNNs on similar input graphs. Our explanations are naturally robust to noise because they are produced from the common decision boundaries of a GNN that govern the predictions of many similar input graphs. The explanations also align well with human intuition because removing the set of edges identified by an explanation from the input graph changes the prediction significantly. Exhaustive experiments on many public datasets demonstrate the superior performance of our method

    Greedy PIG: Adaptive Integrated Gradients

    Full text link
    Deep learning has become the standard approach for most machine learning tasks. While its impact is undeniable, interpreting the predictions of deep learning models from a human perspective remains a challenge. In contrast to model training, model interpretability is harder to quantify and pose as an explicit optimization problem. Inspired by the AUC softmax information curve (AUC SIC) metric for evaluating feature attribution methods, we propose a unified discrete optimization framework for feature attribution and feature selection based on subset selection. This leads to a natural adaptive generalization of the path integrated gradients (PIG) method for feature attribution, which we call Greedy PIG. We demonstrate the success of Greedy PIG on a wide variety of tasks, including image feature attribution, graph compression/explanation, and post-hoc feature selection on tabular data. Our results show that introducing adaptivity is a powerful and versatile method for making attribution methods more powerful

    AdvCat: Domain-Agnostic Robustness Assessment for Cybersecurity-Critical Applications with Categorical Inputs

    Get PDF
    International audienceMachine Learning-as-a-Service systems (MLaaS) have been largely developed for cybersecurity-critical applications, such as detecting network intrusions and fake news campaigns. Despite effectiveness, their robustness against adversarial attacks is one of the key trust concerns for MLaaS deployment. We are thus motivated to assess the adversarial robustness of the Machine Learning models residing at the core of these securitycritical applications with categorical inputs. Previous research efforts on accessing model robustness against manipulation of categorical inputs are specific to use cases and heavily depend on domain knowledge, or require white-box access to the target ML model. Such limitations prevent the robustness assessment from being as a domain-agnostic service provided to various real-world applications. We propose a provably optimal yet computationally highly efficient adversarial robustness assessment protocol for a wide band of ML-driven cybersecurity-critical applications. We demonstrate the use of the domain-agnostic robustness assessment method with substantial experimental study on fake news detection and intrusion detection problems
    • 

    corecore