7,040 research outputs found

    Theory and Algorithms for Forecasting Time Series

    Full text link
    We present data-dependent learning bounds for the general scenario of non-stationary non-mixing stochastic processes. Our learning guarantees are expressed in terms of a data-dependent measure of sequential complexity and a discrepancy measure that can be estimated from data under some mild assumptions. We also also provide novel analysis of stable time series forecasting algorithm using this new notion of discrepancy that we introduce. We use our learning bounds to devise new algorithms for non-stationary time series forecasting for which we report some preliminary experimental results.Comment: An extended abstract has appeared in (Kuznetsov and Mohri, 2015

    Foundations of Sequence-to-Sequence Modeling for Time Series

    Full text link
    The availability of large amounts of time series data, paired with the performance of deep-learning algorithms on a broad class of problems, has recently led to significant interest in the use of sequence-to-sequence models for time series forecasting. We provide the first theoretical analysis of this time series forecasting framework. We include a comparison of sequence-to-sequence modeling to classical time series models, and as such our theory can serve as a quantitative guide for practitioners choosing between different modeling methodologies.Comment: To appear at AISTATS 201

    Rademacher complexity of stationary sequences

    Full text link
    We show how to control the generalization error of time series models wherein past values of the outcome are used to predict future values. The results are based on a generalization of standard i.i.d. concentration inequalities to dependent data without the mixing assumptions common in the time series setting. Our proof and the result are simpler than previous analyses with dependent data or stochastic adversaries which use sequential Rademacher complexities rather than the expected Rademacher complexity for i.i.d. processes. We also derive empirical Rademacher results without mixing assumptions resulting in fully calculable upper bounds.Comment: 15 pages, 1 figur

    Discrepancy-Based Algorithms for Non-Stationary Rested Bandits

    Full text link
    We study the multi-armed bandit problem where the rewards are realizations of general non-stationary stochastic processes, a setting that generalizes many existing lines of work and analyses. In particular, we present a theoretical analysis and derive regret guarantees for rested bandits in which the reward distribution of each arm changes only when we pull that arm. Remarkably, our regret bounds are logarithmic in the number of rounds under several natural conditions. We introduce a new algorithm based on classical UCB ideas combined with the notion of weighted discrepancy, a useful tool for measuring the non-stationarity of a stochastic process. We show that the notion of discrepancy can be used to design very general algorithms and a unified framework for the analysis of multi-armed rested bandit problems with non-stationary rewards. In particular, we show that we can recover the regret guarantees of many specific instances of bandit problems with non-stationary rewards that have been studied in the literature. We also provide experiments demonstrating that our algorithms can enjoy a significant improvement in practice compared to standard benchmarks.Comment: Unfinished wor

    MACRO: A Meta-Algorithm for Conditional Risk Minimization

    Full text link
    We study conditional risk minimization (CRM), i.e. the problem of learning a hypothesis of minimal risk for prediction at the next step of sequentially arriving dependent data. Despite it being a fundamental problem, successful learning in the CRM sense has so far only been demonstrated using theoretical algorithms that cannot be used for real problems as they would require storing all incoming data. In this work, we introduce MACRO, a meta-algorithm for CRM that does not suffer from this shortcoming, but nevertheless offers learning guarantees. Instead of storing all data it maintains and iteratively updates a set of learning subroutines. With suitable approximations, MACRO applied to real data, yielding improved prediction performance compared to traditional non-conditional learning

    Universal Algorithm for Online Trading Based on the Method of Calibration

    Full text link
    We present a universal algorithm for online trading in Stock Market which performs asymptotically at least as good as any stationary trading strategy that computes the investment at each step using a fixed function of the side information that belongs to a given RKHS (Reproducing Kernel Hilbert Space). Using a universal kernel, we extend this result for any continuous stationary strategy. In this learning process, a trader rationally chooses his gambles using predictions made by a randomized well-calibrated algorithm. Our strategy is based on Dawid's notion of calibration with more general checking rules and on some modification of Kakade and Foster's randomized rounding algorithm for computing the well-calibrated forecasts. We combine the method of randomized calibration with Vovk's method of defensive forecasting in RKHS. Unlike the statistical theory, no stochastic assumptions are made about the stock prices. Our empirical results on historical markets provide strong evidence that this type of technical trading can "beat the market" if transaction costs are ignored.Comment: 32 pages. arXiv admin note: substantial text overlap with arXiv:1105.427

    Nonparametric Online Learning Using Lipschitz Regularized Deep Neural Networks

    Full text link
    Deep neural networks are considered to be state of the art models in many offline machine learning tasks. However, their performance and generalization abilities in online learning tasks are much less understood. Therefore, we focus on online learning and tackle the challenging problem where the underlying process is stationary and ergodic and thus removing the i.i.d. assumption and allowing observations to depend on each other arbitrarily. We prove the generalization abilities of Lipschitz regularized deep neural networks and show that by using those networks, a convergence to the best possible prediction strategy is guaranteed

    Nonparametric risk bounds for time-series forecasting

    Full text link
    We derive generalization error bounds for traditional time-series forecasting models. Our results hold for many standard forecasting tools including autoregressive models, moving average models, and, more generally, linear state-space models. These non-asymptotic bounds need only weak assumptions on the data-generating process, yet allow forecasters to select among competing models and to guarantee, with high probability, that their chosen model will perform well. We motivate our techniques with and apply them to standard economic and financial forecasting tools---a GARCH model for predicting equity volatility and a dynamic stochastic general equilibrium model (DSGE), the standard tool in macroeconomic forecasting. We demonstrate in particular how our techniques can aid forecasters and policy makers in choosing models which behave well under uncertainty and mis-specification.Comment: 34 pages, 3 figure

    Kernel Change-point Detection with Auxiliary Deep Generative Models

    Full text link
    Detecting the emergence of abrupt property changes in time series is a challenging problem. Kernel two-sample test has been studied for this task which makes fewer assumptions on the distributions than traditional parametric approaches. However, selecting kernels is non-trivial in practice. Although kernel selection for two-sample test has been studied, the insufficient samples in change point detection problem hinder the success of those developed kernel selection algorithms. In this paper, we propose KL-CPD, a novel kernel learning framework for time series CPD that optimizes a lower bound of test power via an auxiliary generative model. With deep kernel parameterization, KL-CPD endows kernel two-sample test with the data-driven kernel to detect different types of change-points in real-world applications. The proposed approach significantly outperformed other state-of-the-art methods in our comparative evaluation of benchmark datasets and simulation studies.Comment: To appear in ICLR 201

    Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting

    Full text link
    Spatiotemporal forecasting has various applications in neuroscience, climate and transportation domain. Traffic forecasting is one canonical example of such learning task. The task is challenging due to (1) complex spatial dependency on road networks, (2) non-linear temporal dynamics with changing road conditions and (3) inherent difficulty of long-term forecasting. To address these challenges, we propose to model the traffic flow as a diffusion process on a directed graph and introduce Diffusion Convolutional Recurrent Neural Network (DCRNN), a deep learning framework for traffic forecasting that incorporates both spatial and temporal dependency in the traffic flow. Specifically, DCRNN captures the spatial dependency using bidirectional random walks on the graph, and the temporal dependency using the encoder-decoder architecture with scheduled sampling. We evaluate the framework on two real-world large scale road network traffic datasets and observe consistent improvement of 12% - 15% over state-of-the-art baselines.Comment: Published as a conference paper at ICLR 201
    • …
    corecore