11,044 research outputs found

    Approximate Degree and the Complexity of Depth Three Circuits

    Get PDF
    Threshold weight, margin complexity, and Majority-of-Threshold circuit size are basic complexity measures of Boolean functions that arise in learning theory, communication complexity, and circuit complexity. Each of these measures might exhibit a chasm at depth three: namely, all polynomial size Boolean circuits of depth two have polynomial complexity under the measure, but there may exist Boolean circuits of depth three that have essentially maximal complexity exp(Theta(n)). However, existing techniques are far from showing this: for all three measures, the best lower bound for depth three circuits is exp(Omega(n^{2/5})). Moreover, prior methods exclusively study block-composed functions. Such methods appear intrinsically unable to prove lower bounds better than exp(Omega(sqrt{n})) even for depth four circuits, and have yet to prove lower bounds better than exp(Omega(sqrt{n})) for circuits of any constant depth. We take a step toward showing that all of these complexity measures indeed exhibit a chasm at depth three. Specifically, for any arbitrarily small constant delta > 0, we exhibit a depth three circuit of polynomial size (in fact, an O(log n)-decision list) of complexity exp(Omega(n^{1/2-delta})) under each of these measures. Our methods go beyond the block-composed functions studied in prior work, and hence may not be subject to the same barriers. Accordingly, we suggest natural candidate functions that may exhibit stronger bounds

    Improved Pseudorandom Generators from Pseudorandom Multi-Switching Lemmas

    Get PDF
    We give the best known pseudorandom generators for two touchstone classes in unconditional derandomization: an ε\varepsilon-PRG for the class of size-MM depth-dd AC0\mathsf{AC}^0 circuits with seed length log(M)d+O(1)log(1/ε)\log(M)^{d+O(1)}\cdot \log(1/\varepsilon), and an ε\varepsilon-PRG for the class of SS-sparse F2\mathbb{F}_2 polynomials with seed length 2O(logS)log(1/ε)2^{O(\sqrt{\log S})}\cdot \log(1/\varepsilon). These results bring the state of the art for unconditional derandomization of these classes into sharp alignment with the state of the art for computational hardness for all parameter settings: improving on the seed lengths of either PRG would require breakthrough progress on longstanding and notorious circuit lower bounds. The key enabling ingredient in our approach is a new \emph{pseudorandom multi-switching lemma}. We derandomize recently-developed \emph{multi}-switching lemmas, which are powerful generalizations of H{\aa}stad's switching lemma that deal with \emph{families} of depth-two circuits. Our pseudorandom multi-switching lemma---a randomness-efficient algorithm for sampling restrictions that simultaneously simplify all circuits in a family---achieves the parameters obtained by the (full randomness) multi-switching lemmas of Impagliazzo, Matthews, and Paturi [IMP12] and H{\aa}stad [H{\aa}s14]. This optimality of our derandomization translates into the optimality (given current circuit lower bounds) of our PRGs for AC0\mathsf{AC}^0 and sparse F2\mathbb{F}_2 polynomials

    Separating NOF communication complexity classes RP and NP

    Full text link
    We provide a non-explicit separation of the number-on-forehead communication complexity classes RP and NP when the number of players is up to \delta log(n) for any \delta<1. Recent lower bounds on Set-Disjointness [LS08,CA08] provide an explicit separation between these classes when the number of players is only up to o(loglog(n))

    Near-Optimal Lower Bounds on the Threshold Degree and Sign-Rank of AC^0

    Full text link
    The threshold degree of a Boolean function f ⁣:{0,1}n{0,1}f\colon\{0,1\}^n\to\{0,1\} is the minimum degree of a real polynomial pp that represents ff in sign: sgn  p(x)=(1)f(x).\mathrm{sgn}\; p(x)=(-1)^{f(x)}. A related notion is sign-rank, defined for a Boolean matrix F=[Fij]F=[F_{ij}] as the minimum rank of a real matrix MM with sgn  Mij=(1)Fij\mathrm{sgn}\; M_{ij}=(-1)^{F_{ij}}. Determining the maximum threshold degree and sign-rank achievable by constant-depth circuits (AC0\text{AC}^{0}) is a well-known and extensively studied open problem, with complexity-theoretic and algorithmic applications. We give an essentially optimal solution to this problem. For any ϵ>0,\epsilon>0, we construct an AC0\text{AC}^{0} circuit in nn variables that has threshold degree Ω(n1ϵ)\Omega(n^{1-\epsilon}) and sign-rank exp(Ω(n1ϵ)),\exp(\Omega(n^{1-\epsilon})), improving on the previous best lower bounds of Ω(n)\Omega(\sqrt{n}) and exp(Ω~(n))\exp(\tilde{\Omega}(\sqrt{n})), respectively. Our results subsume all previous lower bounds on the threshold degree and sign-rank of AC0\text{AC}^{0} circuits of any given depth, with a strict improvement starting at depth 44. As a corollary, we also obtain near-optimal bounds on the discrepancy, threshold weight, and threshold density of AC0\text{AC}^{0}, strictly subsuming previous work on these quantities. Our work gives some of the strongest lower bounds to date on the communication complexity of AC0\text{AC}^{0}.Comment: 99 page

    String Matching: Communication, Circuits, and Learning

    Get PDF
    String matching is the problem of deciding whether a given n-bit string contains a given k-bit pattern. We study the complexity of this problem in three settings. - Communication complexity. For small k, we provide near-optimal upper and lower bounds on the communication complexity of string matching. For large k, our bounds leave open an exponential gap; we exhibit some evidence for the existence of a better protocol. - Circuit complexity. We present several upper and lower bounds on the size of circuits with threshold and DeMorgan gates solving the string matching problem. Similarly to the above, our bounds are near-optimal for small k. - Learning. We consider the problem of learning a hidden pattern of length at most k relative to the classifier that assigns 1 to every string that contains the pattern. We prove optimal bounds on the VC dimension and sample complexity of this problem

    Retention and application of Skylab experiences to future programs

    Get PDF
    The problems encountered and special techniques and procedures developed on the Skylab program are described along with the experiences and practical benefits obtained for dissemination and use on future programs. Three major topics are discussed: electrical problems, mechanical problems, and special techniques. Special techniques and procedures are identified that were either developed or refined during the Skylab program. These techniques and procedures came from all manufacturing and test phases of the Skylab program and include both flight and GSE items from component level to sophisticated spaceflight systems
    corecore