873 research outputs found

    Benchmarking common quantification strategies for large-scale phosphoproteomics

    Get PDF
    Quantitative phosphoproteomics has become a standard method in molecular and cell biology. Here, the authors compare performance and parameters of phosphoproteome quantification by LFQ, SILAC, and MS2-/MS3-based TMT and introduce a TMT-adapted algorithm for calculating phosphorylation site stoichiometry

    Motif-centric phosphoproteomics to target kinase-mediated signaling pathways

    Get PDF
    細胞内リン酸化修飾の大規模計測に成功 --極微量試料からのリン酸化経路解析も可能に--. 京都大学プレスリリース. 2022-02-01.Identifying cellular phosphorylation pathways based on kinase-substrate relationships is a critical step to understanding the regulation of physiological functions in cells. Mass spectrometry-based phosphoproteomics workflows have made it possible to comprehensively collect information on individual phosphorylation sites in a variety of samples. However, there is still no generic approach to uncover phosphorylation networks based on kinase-substrate relationships in rare cell populations. Here, we describe a motif-centric phosphoproteomics approach combined with multiplexed isobaric labeling, in which in vitro kinase reactions are used to generate targeted phosphopeptides, which are spiked into one of the isobaric channels to increase detectability. Proof-of-concept experiments demonstrate selective and comprehensive quantification of targeted phosphopeptides by using multiple kinases for motif-centric channels. More than 7, 000 tyrosine phosphorylation sites were quantified from several tens of micrograms of starting materials. This approach enables the quantification of multiple phosphorylation pathways under physiological or pathological regulation in a motif-centric manner

    Development of novel proteomic strategies to dissect plant phosphoproteomic signaling under environmental stresses

    Get PDF
    Protein phosphorylation is one of the important signaling mechanisms in plants which transduces environmental stimuli such as salinity, microbes, and hormones into intracellular signals and activates plant defense mechanisms. Thus, understanding the correlation between environmental stresses and alteration of plant phosphorylation requires system-wide phosphoproteomic analysis, which includes identification of kinase-substrate complexes and measurement of phosphorylation-mediated signaling changes. However, identification and quantification of plant phosphoproteome remains challenging due to the highly dynamic nature of plant proteome, interferences of cell wall, pigments, and secondary metabolites. Recently, mass spectrometry (MS) has been integrated with phosphopeptide enrichment approaches for identifying thousands of phosphorylation sites and for quantifying phosphoprotein stoichiometry. Although MS-based phosphoproteomics has revealed the global phosphorylation changes related to different physiological states of plants, many kinase-substrate networks involved in essential signaling pathways, such as the ABA-induced SNF-1-related protein kinase 2 (SnRK2) pathway and the mitogen-activated protein kinases (MAPKs) cascades, are still not completely understood. This dissertation discusses strategies for improving plant sample preparation and for identifying the direct substrates of the plant kinases. Chapter one highlights the low phosphopeptide identification rate by mass spectrometry. Chapter two details the development of a sample preparation protocol for the plant phosphoproteome analysis, and the application of the protocol for the study of tomato cold-induced phosphoproteomic changes. Chapter three shows the development of a novel approach for identification of the direct substrates of the plant kinases, whose activation regulates the signaling transductions of plant stress defense mechanisms

    Large-scale phosphoproteome analysis in seedling leaves of Brachypodium distachyon L.

    Get PDF
    BACKGROUND: Protein phosphorylation is one of the most important post-translational modifications involved in the regulation of plant growth and development as well as diverse stress response. As a member of the Poaceae, Brachypodium distachyon L. is a new model plant for wheat and barley as well as several potential biofuel grasses such as switchgrass. Vegetative growth is vital for biomass accumulation of plants, but knowledge regarding the role of protein phosphorylation modification during vegetative growth, especially in biofuel plants, is far from comprehensive. RESULTS: In this study, we carried out the first large-scale phosphoproteome analysis of seedling leaves in Brachypodium accession Bd21 using TiO(2) microcolumns combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and MaxQuant software. A total of 1470 phosphorylation sites in 950 phosphoproteins were identified, and these phosphoproteins were implicated in various molecular functions and basic cellular processes by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Among the 950 phosphoproteins identified, 127 contained 3 to 8 phosphorylation sites. Conservation analysis showed that 93.4% of the 950 phosphoproteins had phosphorylation orthologs in other plant species. Motif-X analysis of the phosphorylation sites identified 13 significantly enriched phosphorylation motifs, of which 3 were novel phosphorylation motifs. Meanwhile, there were 91 phosphoproteins with both multiple phosphorylation sites and multiple phosphorylation motifs. In addition, we identified 58 phosphorylated transcription factors across 21 families and found out 6 significantly over-represented transcription factor families (C3H, Trihelix, CAMTA, TALE, MYB_related and CPP). Eighty-four protein kinases (PKs), 8 protein phosphatases (PPs) and 6 CESAs were recognized as phosphoproteins. CONCLUSIONS: Through a large-scale bioinformatics analysis of the phosphorylation data in seedling leaves, a complicated PKs- and PPs- centered network related to rapid vegetative growth was deciphered in B. distachyon. We revealed a MAPK cascade network that might play the crucial roles during the phosphorylation signal transduction in leaf growth and development. The phosphoproteins and phosphosites identified from our study expanded our knowledge of protein phosphorylation modification in plants, especially in monocots. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-375) contains supplementary material, which is available to authorized users

    Reconstructing kinase network topologies from phosphoproteomics data reveals cancer-associated rewiring

    Get PDF
    Understanding how oncogenic mutations rewire regulatory-protein networks is important for rationalizing the mechanisms of oncogenesis and for individualizing anticancer treatments. We report a chemical phosphoproteomics method to elucidate the topology of kinase-signaling networks in mammalian cells. We identified >6,000 protein phosphorylation sites that can be used to infer >1,500 kinase–kinase interactions and devised algorithms that can reconstruct kinase network topologies from these phosphoproteomics data. Application of our methods to primary acute myeloid leukemia and breast cancer tumors quantified the relationship between kinase expression and activity, and enabled the identification of hitherto unknown kinase network topologies associated with drug-resistant phenotypes or specific genetic mutations. Using orthogonal methods we validated that PIK3CA wild-type cells adopt MAPK-dependent circuitries in breast cancer cells and that the kinase TTK is important in acute myeloid leukemia. Our phosphoproteomic signatures of network circuitry can identify kinase topologies associated with both phenotypes and genotypes of cancer cells

    Quantitative Proteomic Characterization of CX-4945, a Clinical Stage Inhibitor of Protein Kinase CK2

    Get PDF
    Protein phosphorylation is controlled by protein kinases, and represents a critical signaling mechanism involved in the regulation of fundamental biological processes. Furthermore, the aberrant regulation of kinase activity is implicated in diseases such as cancer and has resulted in efforts to target kinases therapeutically. Protein kinase CK2, although frequently considered constitutively active, has emerged as a clinical target on the basis of its altered expression in different types of human cancers and its regulatory participation in multiple biological processes. In fact, CX-4945, a small molecule ATP-competitive inhibitor of CK2 has advanced to clinical trial and has been widely used to interrogate CK2-dependent signaling events in cells. Despite its widespread applications, an understanding of the mechanism of action of CX-4945 on cells remains limited. In this thesis, comparison of proteomic sample preparation strategies led to the development of a phosphoproteomic workflow that enabled the enrichment of phosphopeptides conforming to the CK2 consensus sequence. Using the optimized workflow, phosphoproteomic profiling was conducted in HeLa cells treated with CX-4945. Several phosphorylation sites conforming to the recognition motif for CK2 phosphorylation displayed significantly decreased phosphorylation in response to CX-4945. Kinase substrate enrichment analysis also revealed a broad impact of CX-4945 on several kinases other than CK2. Profiling of the kinome utilizing multiplexed inhibitor beads also revealed changes in the activity of other kinases including activation of the ERK MAPK pathway and inhibition of the PI3K/Akt/mTOR pathway. Studies with Inhibitor VIII, an unrelated CK2 inhibitor, also resulted in activation of the ERK MAPK pathway suggesting that CK2 has a role in regulating this pathway. By comparison, the PI3K/Akt/mTOR pathway was not affected by Inhibitor VIII indicating that the effects of CX-4945 on that pathway are independent of CK2. Overall, this investigation provides valuable insight into the regulation of the phosphoproteome and the kinome in response to CX-4945 in HeLa cells. Dynamic markers of CK2 activity in cells were identified and putative CK2-independent effects of CX-4945 were revealed. Collectively, these studies illustrate the utility of global proteomic approaches to elucidate the cellular effects of clinical-stage kinase inhibitors

    Analysis of the Candida Albicans Phosphoproteome

    Get PDF
    Candida albicans is an important human fungal pathogen in both immunocompetent and immunocompromised individuals. C. albicans regulation has been studied in many contexts, including morphological transitions, mating competence, biofilm forma- tion, stress resistance, and cell wall synthesis. Analysis of kinase- and phosphatase-deficient mutants has made it clear that pro- tein phosphorylation plays an important role in the regulation of these pathways. In this study, to further our understanding of phosphorylation in C. albicans regulation, we performed a deep analysis of the phosphoproteome in C. albicans. We identified 19,590 unique peptides that corresponded to 15,906 unique phosphosites on 2,896 proteins. The ratios of serine, threonine, and tyrosine phosphosites were 80.01%, 18.11%, and 1.81%, respectively. The majority of proteins (2,111) contained at least two de- tected phosphorylation sites. Consistent with findings in other fungi, cytoskeletal proteins were among the most highly phos- phorylated proteins, and there were differences in Gene Ontology (GO) terms for proteins with serine and threonine versus ty- rosine phosphorylation sites. This large-scale analysis identified phosphosites in protein components of Mediator, an important transcriptional coregulatory protein complex. A targeted analysis of the phosphosites in Mediator complex proteins confirmed the large-scale studies, and further in vitro assays identified a subset of these phosphorylations that were catalyzed by Cdk8 (Ssn3), a kinase within the Mediator complex. These data represent the deepest single analysis of a fungal phosphoproteome and lay the groundwork for future analyses of the C. albicans phosphoproteome and specific phosphoproteins

    Identification and characterization of chloroplast casein kinase II from Oryza sativa (rice)

    Get PDF
    Plastid casein kinase II is an important regulator of transcription, posttranscriptional processes, and, most likely, different metabolic functions in dicotyledonous species. Here we report the identification and characterization of pCKII from the monocotyledonous species Oryza sativa. OspCKII activity was enriched from isolated rice chloroplasts using heparin-Sepharose chromatography, in which it co-elutes with the transcriptionally active chromosome (TAC) and several ribosomal proteins. Inclusion mass scanning of the kinase-active fraction identified the gene model for OspCKII. Transient expression of GFP fused to the 184 N-terminal amino acids of the OspCKII sequence in rice confirmed the chloroplastic localization of the kinase. OspCKII activity shows the characteristic features of casein kinase II, such as the utilization of GTP as phosphate donor, inhibition by low concentrations of heparin and poly-lysine, and utilization of the canonical pCKII motif E-S-E-G-E in the model substrate RNP29. Phosphoproteome analysis of a protein extract from rice leaves combined with a meta-analysis with published phosphoproteomics data revealed differences in the target protein spectrum between rice and Arabidopsis. Consistently, several pCKII phosphorylation sites in dicotyledonous plants are not conserved in monocots and algae, suggesting that details of pCKII regulation in plastids have changed during evolutio

    Comprehensive definition of Ser/Thr/Tyr phosphorylation in mycobacteria: towards understanding reprogramming of normal macrophage function by pathogenic mycobacteria

    Get PDF
    Mycobacterium tuberculosis, the causative agent for the disease Tuberculosis, is a serious public health problem that is responsible for 1.6 million deaths each year. The WHO’s recent report on Tuberculosis estimates that a third of the world’s population is latently infected with the bacteria, and, of those, 10% will progress to active disease. M. tuberculosis is a successful pathogen mainly due to its ability to adapt and survive in changing environments. It can survive a dormant state with limited metabolic activity during latent infection, while also being able to escape the macrophage and disseminate into active disease. Efforts to eradicate the disease must be based on understanding the biology of this organism, and the mechanisms it uses to infect, colonize, and evade the immune system. Understanding the behaviour of pathogenic mycobacteria in the macrophage is also important to the discovery of new drug targets. In this thesis, we employed state of the art mass spectrometry techniques, which allowed us to unpack the biology of this bacterium in different growth environments and expand our understanding of the mechanisms it employs to adapt and survive. We investigated protein regulation by the process of phosphorylation, through sensory kinases, which add a phosphate group to a protein of interest, thereby regulating its function. First, we interrogated the phosphoproteomic landscape between M. bovis BCG and M. smegmatis to explain how differential protein regulation results in the differences between slow and fast growth of mycobacteria. Second, we focused on Protein Kinase G (PknG), which plays an important role in bacterial survival by blocking phagosome/lysosome fusion. We identified the in vivo physiological substrates of this kinase in actively growing M.bovis BCG culture. Our results revealed that this kinase is a regulator of protein synthesis. We then examined the mechanisms of survival in murine RAW 246.7 macrophages mediated by PknG, using M. bovis BCG reference strain and PknG knock-out mutant. Our results indicated strong evidence that pathogenic mycobacteria disrupt the macrophagic cytoskeleton, through phosphorylation of proteins that are involved in cytoskeleton rearrangement. These results explain the strategies that pathogenic mycobacteria employ mediated by PknG to block phagosome-lysosome fusion and evade the host immune system and survive for prolonged periods in the macrophages. The findings of this thesis contribute to our understanding of the physiology of pathogenic mycobacteria and their interaction with the host
    corecore