3,320 research outputs found

    Discovering Fuzzy Functional Dependencies as Semantic Knowledge in Large Databases

    Get PDF
    Fuzzy functional dependency (FFD) is a kind of semantic knowledge and can be discovered from a large volume of business data. Sectional FFD and Attribute FFD are discussed so as to reflect semantics of the business world and express useful information that is natural for people to comprehend. The experimental results on an insurance data set show that the proposed method can extract knowledge efficiently and effectively

    Possibilistic functional dependencies and their relationship to possibility theory

    Get PDF
    This paper introduces possibilistic functional dependencies. These dependencies are associated with a particular possibility distribution over possible worlds of a classical database. The possibility distribution reflects a layered view of the database. The highest layer of the (classical) database consists of those tuples that certainly belong to it, while the other layers add tuples that only possibly belong to the database, with different levels of possibility. The relation between the confidence levels associated with the tuples and the possibility distribution over possible database worlds is discussed in detail in the setting of possibility theory. A possibilistic functional dependency is a classical functional dependency associated with a certainty level that reflects the highest confidence level where the functional dependency no longer holds in the layered database. Moreover, the relationship between possibilistic functional dependencies and possibilistic logic formulas is established. Related work is reviewed, and the intended use of possibilistic functional dependencies is discussed in the conclusion

    Data mining in soft computing framework: a survey

    Get PDF
    The present article provides a survey of the available literature on data mining using soft computing. A categorization has been provided based on the different soft computing tools and their hybridizations used, the data mining function implemented, and the preference criterion selected by the model. The utility of the different soft computing methodologies is highlighted. Generally fuzzy sets are suitable for handling the issues related to understandability of patterns, incomplete/noisy data, mixed media information and human interaction, and can provide approximate solutions faster. Neural networks are nonparametric, robust, and exhibit good learning and generalization capabilities in data-rich environments. Genetic algorithms provide efficient search algorithms to select a model, from mixed media data, based on some preference criterion/objective function. Rough sets are suitable for handling different types of uncertainty in data. Some challenges to data mining and the application of soft computing methodologies are indicated. An extensive bibliography is also included

    Relaxed Functional Dependencies - A Survey of Approaches

    Get PDF
    Recently, there has been a renovated interest in functional dependencies due to the possibility of employing them in several advanced database operations, such as data cleaning, query relaxation, record matching, and so forth. In particular, the constraints defined for canonical functional dependencies have been relaxed to capture inconsistencies in real data, patterns of semantically related data, or semantic relationships in complex data types. In this paper, we have surveyed 35 of such functional dependencies, providing a classification criteria, motivating examples, and a systematic analysis of them

    A first approach to the multipurpose relational database server

    Get PDF
    In this paper, an architecture and an implementation of a multipurpose relational database server are proposed. This architecture enables classical queries to be executed, deductions to be made, and data mining operations to be performed on fuzzy or classical data. The proposal of this integration is to combine several ways of querying different types of data. In order to achieve this, a combination of existing metaknowledge bases and new data catalog elements is presented. We also introduce a language for handling all these data coherently and uniformly on the basis of classical SQL sentences

    Fuzzy inequational logic

    Full text link
    We present a logic for reasoning about graded inequalities which generalizes the ordinary inequational logic used in universal algebra. The logic deals with atomic predicate formulas of the form of inequalities between terms and formalizes their semantic entailment and provability in graded setting which allows to draw partially true conclusions from partially true assumptions. We follow the Pavelka approach and define general degrees of semantic entailment and provability using complete residuated lattices as structures of truth degrees. We prove the logic is Pavelka-style complete. Furthermore, we present a logic for reasoning about graded if-then rules which is obtained as particular case of the general result

    Proceedings of the first international VLDB workshop on Management of Uncertain Data

    Get PDF

    Fuzzy-Granular Based Data Mining for Effective Decision Support in Biomedical Applications

    Get PDF
    Due to complexity of biomedical problems, adaptive and intelligent knowledge discovery and data mining systems are highly needed to help humans to understand the inherent mechanism of diseases. For biomedical classification problems, typically it is impossible to build a perfect classifier with 100% prediction accuracy. Hence a more realistic target is to build an effective Decision Support System (DSS). In this dissertation, a novel adaptive Fuzzy Association Rules (FARs) mining algorithm, named FARM-DS, is proposed to build such a DSS for binary classification problems in the biomedical domain. Empirical studies show that FARM-DS is competitive to state-of-the-art classifiers in terms of prediction accuracy. More importantly, FARs can provide strong decision support on disease diagnoses due to their easy interpretability. This dissertation also proposes a fuzzy-granular method to select informative and discriminative genes from huge microarray gene expression data. With fuzzy granulation, information loss in the process of gene selection is decreased. As a result, more informative genes for cancer classification are selected and more accurate classifiers can be modeled. Empirical studies show that the proposed method is more accurate than traditional algorithms for cancer classification. And hence we expect that genes being selected can be more helpful for further biological studies
    • …
    corecore