11,118 research outputs found

    From Sensor to Observation Web with Environmental Enablers in the Future Internet

    Get PDF
    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term ?envirofied? Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management)

    TEXTUAL DATA MINING FOR NEXT GENERATION INTELLIGENT DECISION MAKING IN INDUSTRIAL ENVIRONMENT: A SURVEY

    Get PDF
    This paper proposes textual data mining as a next generation intelligent decision making technology for sustainable knowledge management solutions in any industrial environment. A detailed survey of applications of Data Mining techniques for exploiting information from different data formats and transforming this information into knowledge is presented in the literature survey. The focus of the survey is to show the power of different data mining techniques for exploiting information from data. The literature surveyed in this paper shows that intelligent decision making is of great importance in many contexts within manufacturing, construction and business generally. Business intelligence tools, which can be interpreted as decision support tools, are of increasing importance to companies for their success within competitive global markets. However, these tools are dependent on the relevancy, accuracy and overall quality of the knowledge on which they are based and which they use. Thus the research work presented in the paper uncover the importance and power of different data mining techniques supported by text mining methods used to exploit information from semi-structured or un-structured data formats. A great source of information is available in these formats and when exploited by combined efforts of data and text mining tools help the decision maker to take effective decision for the enhancement of business of industry and discovery of useful knowledge is made for next generation of intelligent decision making. Thus the survey shows the power of textual data mining as the next generation technology for intelligent decision making in the industrial environment

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Industry Projects in Requirements Engineering Education: Application in a University Course in the US and Comparison with Germany

    Get PDF
    Project-based learning has proven useful in software engineering education to increase student engagement and learning performance. In this paper, we contribute our experiences from applying industry projects in an undergraduate requirements engineering course in the United States. We furthermore discuss our experiences from courses conducted in Germany and the US course in light of difference in the educational systems. Results show that our course design is well received in both countries in terms of learning outcomes, student motivation, teamwork, attention to detail, and performance in the exam
    • 

    corecore