20,017 research outputs found

    Social Search with Missing Data: Which Ranking Algorithm?

    Get PDF
    Online social networking tools are extremely popular, but can miss potential discoveries latent in the social 'fabric'. Matchmaking services which can do naive profile matching with old database technology are too brittle in the absence of key data, and even modern ontological markup, though powerful, can be onerous at data-input time. In this paper, we present a system called BuddyFinder which can automatically identify buddies who can best match a user's search requirements specified in a term-based query, even in the absence of stored user-profiles. We deploy and compare five statistical measures, namely, our own CORDER, mutual information (MI), phi-squared, improved MI and Z score, and two TF/IDF based baseline methods to find online users who best match the search requirements based on 'inferred profiles' of these users in the form of scavenged web pages. These measures identify statistically significant relationships between online users and a term-based query. Our user evaluation on two groups of users shows that BuddyFinder can find users highly relevant to search queries, and that CORDER achieved the best average ranking correlations among all seven algorithms and improved the performance of both baseline methods

    Discovery-led refinement in e-discovery investigations: sensemaking, cognitive ergonomics and system design.

    Get PDF
    Given the very large numbers of documents involved in e-discovery investigations, lawyers face a considerable challenge of collaborative sensemaking. We report findings from three workplace studies which looked at different aspects of how this challenge was met. From a sociotechnical perspective, the studies aimed to understand how investigators collectively and individually worked with information to support sensemaking and decision making. Here, we focus on discovery-led refinement; specifically, how engaging with the materials of the investigations led to discoveries that supported refinement of the problems and new strategies for addressing them. These refinements were essential for tractability. We begin with observations which show how new lines of enquiry were recursively embedded. We then analyse the conceptual structure of a line of enquiry and consider how reflecting this in e-discovery support systems might support scalability and group collaboration. We then focus on the individual activity of manual document review where refinement corresponded with the inductive identification of classes of irrelevant and relevant documents within a collection. Our observations point to the effects of priming on dealing with these efficiently and to issues of cognitive ergonomics at the human–computer interface. We use these observations to introduce visualisations that might enable reviewers to deal with such refinements more efficiently

    Semantic keyword search for expert witness discovery

    Get PDF
    In the last few years, there has been an increase in the amount of information stored in semantically enriched knowledge bases, represented in RDF format. These improve the accuracy of search results when the queries are semantically formal. However framing such queries is inappropriate for inexperience users because they require specialist knowledge of ontology and syntax. In this paper, we explore an approach that automates the process of converting a conventional keyword search into a semantically formal query in order to find an expert on a semantically enriched knowledge base. A case study on expert witness discovery for the resolution of a legal dispute is chosen as the domain of interest and a system named SKengine is implemented to illustrate the approach. As well as providing an easy user interface, our experiment shows that SKengine can retrieve expert witness information with higher precision and higher recall, compared with the other system, with the same interface, implemented by a vector model approach

    Discovery Is Never By Chance: Designing for (Un)Serendipity

    No full text
    Serendipity has a long tradition in the history of science as having played a key role in many significant discoveries. Computer scientists, valuing the role of serendipity in discovery, have attempted to design systems that encourage serendipity. However, that research has focused primarily on only one aspect of serendipity: that of chance encounters. In reality, for serendipity to be valuable chance encounters must be synthesized into insight. In this paper we show, through a formal consideration of serendipity and analysis of how various systems have seized on attributes of interpreting serendipity, that there is a richer space for design to support serendipitous creativity, innovation and discovery than has been tapped to date. We discuss how ideas might be encoded to be shared or discovered by ‘association-hunting’ agents. We propose considering not only the inventor’s role in perceiving serendipity, but also how that inventor’s perception may be enhanced to increase the opportunity for serendipity. We explore the role of environment and how we can better enable serendipitous discoveries to find a home more readily and immediately

    A Query Integrator and Manager for the Query Web

    Get PDF
    We introduce two concepts: the Query Web as a layer of interconnected queries over the document web and the semantic web, and a Query Web Integrator and Manager (QI) that enables the Query Web to evolve. QI permits users to write, save and reuse queries over any web accessible source, including other queries saved in other installations of QI. The saved queries may be in any language (e.g. SPARQL, XQuery); the only condition for interconnection is that the queries return their results in some form of XML. This condition allows queries to chain off each other, and to be written in whatever language is appropriate for the task. We illustrate the potential use of QI for several biomedical use cases, including ontology view generation using a combination of graph-based and logical approaches, value set generation for clinical data management, image annotation using terminology obtained from an ontology web service, ontology-driven brain imaging data integration, small-scale clinical data integration, and wider-scale clinical data integration. Such use cases illustrate the current range of applications of QI and lead us to speculate about the potential evolution from smaller groups of interconnected queries into a larger query network that layers over the document and semantic web. The resulting Query Web could greatly aid researchers and others who now have to manually navigate through multiple information sources in order to answer specific questions
    • …
    corecore