449 research outputs found

    Finding Temporal Patterns in Noisy Longitudinal Data: A Study in Diabetic Retinopathy

    Get PDF
    This paper describes an approach to temporal pattern mining using the concept of user defined temporal prototypes to define the nature of the trends of interests. The temporal patterns are defined in terms of sequences of support values associated with identified frequent patterns. The prototypes are defined mathematically so that they can be mapped onto the temporal patterns. The focus for the advocated temporal pattern mining process is a large longitudinal patient database collected as part of a diabetic retinopathy screening programme, The data set is, in itself, also of interest as it is very noisy (in common with other similar medical datasets) and does not feature a clear association between specific time stamps and subsets of the data. The diabetic retinopathy application, the data warehousing and cleaning process, and the frequent pattern mining procedure (together with the application of the prototype concept) are all described in the paper. An evaluation of the frequent pattern mining process is also presented

    Efficient Pattern Mining for Wireless Sensor Networks Data

    Get PDF
    Wireless Sensor Networks generate a large amount of data in the form of streams. Mining association rules on the sensor data provides useful information for different applications. In this paper, a total from partial (TFP) tree based approach is used to generate the set of all association rules from data. Our experimental results show that TFP techniques perform better result in case of sparse dataset and significantly comparable as SP-tree approach for the dense dataset. Keywords: Association Rule Mining; Wireless Sensor Networks; Frequent Pattern

    Spatio-temporal data classification through multidimensional sequential patterns: Application to crop mapping in complex landscape

    Get PDF
    International audienceThe main use of satellite imagery concerns the process of the spectral and spatial dimensions of the data. However, to extract useful information, the temporal dimension also has to be accounted for which increases the complexity of the problem. For this reason, there is a need for suitable data mining techniques for this source of data. In this work, we developed a data mining methodology to extract multidimensional sequential patterns to characterize temporal behaviors. We then used the extracted multidimensional sequences to build a classifier, and show how the patterns help to distinguish between the classes. We evaluated our technique using a real-world dataset containing information about land use in Mali (West Africa) to automatically recognize if an area is cultivated or not

    Investigation of Team Formation in Dynamic Social Networks

    Get PDF
    Team Formation Problem (TFP) in Social Networks (SN) is to collect the group of individuals who match the requirements of given tasks under some constraints. It has several applications, including academic collaborations, healthcare, and human resource management. These types of problems are highly challenging because each individual has his or her own demands and objectives that might conflict with team objectives. The major contribution of this dissertation is to model a computational framework to discover teams of experts in various applications and predict the potential for collaboration in the future from a given SN. Inspired by an evolutionary search technique using a higher-order cultural evolution, a framework is proposed using Knowledge-Based Cultural Algorithms to identify teams from co-authorship and industrial settings. This model reduces the search domain while guiding the search direction by extracting situational knowledge and updating it in each evolution. Motivated from the above results, this research examines the palliative care multidisciplinary networks to identify and measure the performance of the optimal team of care providers in a highly dynamic and unbalanced SN of volunteer, community, and professional caregivers. Thereafter, a visualization framework is designed to explore and monitor the evolution in the structure of the care networks. It helps to identify isolated patients, imbalanced resource allocation, and uneven service distribution in the network. This contribution is recognized by Hospice and the Windsor Essex Compassion Care Community in partnership with the Faculty of Nursing. In each setting, several cost functions are attempted to measure the performance of the teams. To support this study, the temporal nature of two important evaluation metrics is analyzed in Dynamic Social Networks (DSN): dynamic communication cost and dynamic expertise level. Afterward, a novel generic framework for TFP is designed by incorporating essential cost functions, including the above dynamic cost functions. The Multi-Objective Cultural Algorithms (MOCA) is used for this purpose. In each generation, it keeps track of the best solutions and enhances exploration by driving mutation direction towards unexplored areas. The experimental results reach closest to the exact algorithm and outperform well-known searching methods. Subsequently, this research focuses on predicting suitable members for the teams in the future, which is typically a real-time application of Link Prediction. Learning temporal behavior of each vertex in a given DSN can be used to decide the future connections of the individual with the teams. A probability function is introduced based on the activeness of the individual. To quantify the activeness score, this study examines each vertex as to how actively it interacts with new and existing vertices in DSN. It incorporates two more objective functions: the weighted shortest distance and the weighted common neighbor index. Because it is technically a classification problem, deep learning methods have been observed as the most effective solution. The model is trained and tested with Multilayer Perceptron. The AUC achieves above 93%. Besides this, analyzing common neighbors with any two vertices, which are expected to connect, have a high impact on predicting the links. A new method is introduced that extracts subgraph of common neighbors and examines features of each vertex in the subgraph to predict the future links. The sequence of subgraphs\u27 adjacency matrices of DSN can be ordered temporally and treated as a video. It is tested with Convolutional Neural Networks and Long Short Term Memory Networks for the prediction. The obtained results are compared against heuristic and state-of-the-art methods, where the results reach above 96% of AUC. In conclusion, the knowledge-based evolutionary approach performs well in searching through SN and recommending effective teams of experts to complete given tasks successfully in terms of time and accuracy. However, it does not support the prediction problem. Deep learning methods, however, perform well in predicting the future collaboration of the teams

    Predictive trend mining for social network analysis

    Get PDF
    This thesis describes research work within the theme of trend mining as applied to social network data. Trend mining is a type of temporal data mining that provides observation into how information changes over time. In the context of the work described in this thesis the focus is on how information contained in social networks changes with time. The work described proposes a number of data mining based techniques directed at mechanisms to not only detect change, but also support the analysis of change, with respect to social network data. To this end a trend mining framework is proposed to act as a vehicle for evaluating the ideas presented in this thesis. The framework is called the Predictive Trend Mining Framework (PTMF). It is designed to support "end-to-end" social network trend mining and analysis. The work described in this thesis is divided into two elements: Frequent Pattern Trend Analysis (FPTA) and Prediction Modeling (PM). For evaluation purposes three social network datasets have been considered: Great Britain Cattle Movement, Deeside Insurance and Malaysian Armed Forces Logistic Cargo. The evaluation indicates that a sound mechanism for identifying and analysing trends, and for using this trend knowledge for prediction purposes, has been established

    A Survey on Index Support for Item Set Mining

    Get PDF
    It is very difficult to handle the huge amount of information stored in modern databases. To manage with these databases association rule mining is currently used, which is a costly process that involves a significant amount of time and memory. Therefore, it is necessary to develop an approach to overcome these difficulties. A suitable data structures and algorithms must be developed to effectively perform the item set mining. An index includes all necessary characteristics potentially needed during the mining task; the extraction can be executed with the help of the index, without accessing the database. A database index is a data structure that enhances the speed of information retrieval operations on a database table at very low cost and increased storage space. The use index permits user interaction, in which the user can specify different attributes for item set extraction. Therefore, the extraction can be completed with the use index and without accessing the original database. Index also supports for reusing concept to mine item sets with the use of any support threshold. This paper also focuses on the survey of index support for item set mining which are proposed by various authors
    • 

    corecore