13,203 research outputs found

    Semantic Web meets Web 2.0 (and vice versa): The Value of the Mundane for the Semantic Web

    No full text
    Web 2.0, not the Semantic Web, has become the face of “the next generation Web” among the tech-literate set, and even among many in the various research communities involved in the Web. Perceptions in these communities of what the Semantic Web is (and who is involved in it) are often misinformed if not misguided. In this paper we identify opportunities for Semantic Web activities to connect with the Web 2.0 community; we explore why this connection is of significant benefit to both groups, and identify how these connections open valuable research opportunities “in the real” for the Semantic Web effort

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Report of the Stanford Linked Data Workshop

    No full text
    The Stanford University Libraries and Academic Information Resources (SULAIR) with the Council on Library and Information Resources (CLIR) conducted at week-long workshop on the prospects for a large scale, multi-national, multi-institutional prototype of a Linked Data environment for discovery of and navigation among the rapidly, chaotically expanding array of academic information resources. As preparation for the workshop, CLIR sponsored a survey by Jerry Persons, Chief Information Architect emeritus of SULAIR that was published originally for workshop participants as background to the workshop and is now publicly available. The original intention of the workshop was to devise a plan for such a prototype. However, such was the diversity of knowledge, experience, and views of the potential of Linked Data approaches that the workshop participants turned to two more fundamental goals: building common understanding and enthusiasm on the one hand and identifying opportunities and challenges to be confronted in the preparation of the intended prototype and its operation on the other. In pursuit of those objectives, the workshop participants produced:1. a value statement addressing the question of why a Linked Data approach is worth prototyping;2. a manifesto for Linked Libraries (and Museums and Archives and …);3. an outline of the phases in a life cycle of Linked Data approaches;4. a prioritized list of known issues in generating, harvesting & using Linked Data;5. a workflow with notes for converting library bibliographic records and other academic metadata to URIs;6. examples of potential “killer apps” using Linked Data: and7. a list of next steps and potential projects.This report includes a summary of the workshop agenda, a chart showing the use of Linked Data in cultural heritage venues, and short biographies and statements from each of the participants

    Using semantic indexing to improve searching performance in web archives

    Get PDF
    The sheer volume of electronic documents being published on the Web can be overwhelming for users if the searching aspect is not properly addressed. This problem is particularly acute inside archives and repositories containing large collections of web resources or, more precisely, web pages and other web objects. Using the existing search capabilities in web archives, results can be compromised because of the size of data, content heterogeneity and changes in scientific terminologies and meanings. During the course of this research, we will explore whether semantic web technologies, particularly ontology-based annotation and retrieval, could improve precision in search results in multi-disciplinary web archives

    Distributed Holistic Clustering on Linked Data

    Full text link
    Link discovery is an active field of research to support data integration in the Web of Data. Due to the huge size and number of available data sources, efficient and effective link discovery is a very challenging task. Common pairwise link discovery approaches do not scale to many sources with very large entity sets. We here propose a distributed holistic approach to link many data sources based on a clustering of entities that represent the same real-world object. Our clustering approach provides a compact and fused representation of entities, and can identify errors in existing links as well as many new links. We support a distributed execution of the clustering approach to achieve faster execution times and scalability for large real-world data sets. We provide a novel gold standard for multi-source clustering, and evaluate our methods with respect to effectiveness and efficiency for large data sets from the geographic and music domains

    Efficient Discovery of Ontology Functional Dependencies

    Full text link
    Poor data quality has become a pervasive issue due to the increasing complexity and size of modern datasets. Constraint based data cleaning techniques rely on integrity constraints as a benchmark to identify and correct errors. Data values that do not satisfy the given set of constraints are flagged as dirty, and data updates are made to re-align the data and the constraints. However, many errors often require user input to resolve due to domain expertise defining specific terminology and relationships. For example, in pharmaceuticals, 'Advil' \emph{is-a} brand name for 'ibuprofen' that can be captured in a pharmaceutical ontology. While functional dependencies (FDs) have traditionally been used in existing data cleaning solutions to model syntactic equivalence, they are not able to model broader relationships (e.g., is-a) defined by an ontology. In this paper, we take a first step towards extending the set of data quality constraints used in data cleaning by defining and discovering \emph{Ontology Functional Dependencies} (OFDs). We lay out theoretical and practical foundations for OFDs, including a set of sound and complete axioms, and a linear inference procedure. We then develop effective algorithms for discovering OFDs, and a set of optimizations that efficiently prune the search space. Our experimental evaluation using real data show the scalability and accuracy of our algorithms.Comment: 12 page

    A study of existing Ontologies in the IoT-domain

    Get PDF
    Several domains have adopted the increasing use of IoT-based devices to collect sensor data for generating abstractions and perceptions of the real world. This sensor data is multi-modal and heterogeneous in nature. This heterogeneity induces interoperability issues while developing cross-domain applications, thereby restricting the possibility of reusing sensor data to develop new applications. As a solution to this, semantic approaches have been proposed in the literature to tackle problems related to interoperability of sensor data. Several ontologies have been proposed to handle different aspects of IoT-based sensor data collection, ranging from discovering the IoT sensors for data collection to applying reasoning on the collected sensor data for drawing inferences. In this paper, we survey these existing semantic ontologies to provide an overview of the recent developments in this field. We highlight the fundamental ontological concepts (e.g., sensor-capabilities and context-awareness) required for an IoT-based application, and survey the existing ontologies which include these concepts. Based on our study, we also identify the shortcomings of currently available ontologies, which serves as a stepping stone to state the need for a common unified ontology for the IoT domain.Comment: Submitted to Elsevier JWS SI on Web semantics for the Internet/Web of Thing

    Semantic Network Analysis of Ontologies

    Get PDF
    A key argument for modeling knowledge in ontologies is the easy re-use and re-engineering of the knowledge. However, current ontology engineering tools provide only basic functionalities for analyzing ontologies. Since ontologies can be considered as graphs, graph analysis techniques are a suitable answer for this need. Graph analysis has been performed by sociologists for over 60 years, and resulted in the vivid research area of Social Network Analysis (SNA). While social network structures currently receive high attention in the Semantic Web community, there are only very few SNA applications, and virtually none for analyzing the structure of ontologies. We illustrate the benefits of applying SNA to ontologies and the Semantic Web, and discuss which research topics arise on the edge between the two areas. In particular, we discuss how different notions of centrality describe the core content and structure of an ontology. From the rather simple notion of degree centrality over betweenness centrality to the more complex eigenvector centrality, we illustrate the insights these measures provide on two ontologies, which are different in purpose, scope, and size
    • …
    corecore