35,108 research outputs found

    On the role of pre and post-processing in environmental data mining

    Get PDF
    The quality of discovered knowledge is highly depending on data quality. Unfortunately real data use to contain noise, uncertainty, errors, redundancies or even irrelevant information. The more complex is the reality to be analyzed, the higher the risk of getting low quality data. Knowledge Discovery from Databases (KDD) offers a global framework to prepare data in the right form to perform correct analyses. On the other hand, the quality of decisions taken upon KDD results, depend not only on the quality of the results themselves, but on the capacity of the system to communicate those results in an understandable form. Environmental systems are particularly complex and environmental users particularly require clarity in their results. In this paper some details about how this can be achieved are provided. The role of the pre and post processing in the whole process of Knowledge Discovery in environmental systems is discussed

    Unified Representation of Molecules and Crystals for Machine Learning

    Get PDF
    Accurate simulations of atomistic systems from first principles are limited by computational cost. In high-throughput settings, machine learning can potentially reduce these costs significantly by accurately interpolating between reference calculations. For this, kernel learning approaches crucially require a single Hilbert space accommodating arbitrary atomistic systems. We introduce a many-body tensor representation that is invariant to translations, rotations and nuclear permutations of same elements, unique, differentiable, can represent molecules and crystals, and is fast to compute. Empirical evidence is presented for energy prediction errors below 1 kcal/mol for 7k organic molecules and 5 meV/atom for 11k elpasolite crystals. Applicability is demonstrated for phase diagrams of Pt-group/transition-metal binary systems.Comment: Revised version, minor changes throughou

    From isomorphism to polymorphism: connecting interzeolite transformations to structural and graph similarity

    Full text link
    Zeolites are nanoporous crystalline materials with abundant industrial applications. Despite sustained research, only 235 different zeolite frameworks have been realized out of millions of hypothetical ones predicted by computational enumeration. Structure-property relationships in zeolite synthesis are very complex and only marginally understood. Here, we apply structure and graph-based unsupervised machine learning to gain insight on zeolite frameworks and how they relate to experimentally observed polymorphism and phase transformations. We begin by describing zeolite structures using the Smooth Overlap of Atomic Positions method, which clusters crystals with similar cages and density in a way consistent with traditional hand-selected composite building units. To also account for topological differences, zeolite crystals are represented as multigraphs and compared by isomorphism tests. We find that fourteen different pairs and one trio of known frameworks are graph isomorphic. Based on experimental interzeolite conversions and occurrence of competing phases, we propose that the availability of kinetic-controlled transformations between metastable zeolite frameworks is related to their similarity in the graph space. When this description is applied to enumerated structures, over 3,400 hypothetical structures are found to be isomorphic to known frameworks, and thus might be realized from their experimental counterparts. Using a continuous similarity metric, the space of known zeolites shows additional overlaps with experimentally observed phase transformations. Hence, graph-based similarity approaches suggest a venue for realizing novel zeolites from existing ones by providing a relationship between pairwise structure similarity and experimental transformations.Comment: 11 pages, 6 figure

    Data mining as a tool for environmental scientists

    Get PDF
    Over recent years a huge library of data mining algorithms has been developed to tackle a variety of problems in fields such as medical imaging and network traffic analysis. Many of these techniques are far more flexible than more classical modelling approaches and could be usefully applied to data-rich environmental problems. Certain techniques such as Artificial Neural Networks, Clustering, Case-Based Reasoning and more recently Bayesian Decision Networks have found application in environmental modelling while other methods, for example classification and association rule extraction, have not yet been taken up on any wide scale. We propose that these and other data mining techniques could be usefully applied to difficult problems in the field. This paper introduces several data mining concepts and briefly discusses their application to environmental modelling, where data may be sparse, incomplete, or heterogenous

    Data-driven discovery of coordinates and governing equations

    Full text link
    The discovery of governing equations from scientific data has the potential to transform data-rich fields that lack well-characterized quantitative descriptions. Advances in sparse regression are currently enabling the tractable identification of both the structure and parameters of a nonlinear dynamical system from data. The resulting models have the fewest terms necessary to describe the dynamics, balancing model complexity with descriptive ability, and thus promoting interpretability and generalizability. This provides an algorithmic approach to Occam's razor for model discovery. However, this approach fundamentally relies on an effective coordinate system in which the dynamics have a simple representation. In this work, we design a custom autoencoder to discover a coordinate transformation into a reduced space where the dynamics may be sparsely represented. Thus, we simultaneously learn the governing equations and the associated coordinate system. We demonstrate this approach on several example high-dimensional dynamical systems with low-dimensional behavior. The resulting modeling framework combines the strengths of deep neural networks for flexible representation and sparse identification of nonlinear dynamics (SINDy) for parsimonious models. It is the first method of its kind to place the discovery of coordinates and models on an equal footing.Comment: 25 pages, 6 figures; added acknowledgment

    Hierarchical Visualization of Materials Space with Graph Convolutional Neural Networks

    Full text link
    The combination of high throughput computation and machine learning has led to a new paradigm in materials design by allowing for the direct screening of vast portions of structural, chemical, and property space. The use of these powerful techniques leads to the generation of enormous amounts of data, which in turn calls for new techniques to efficiently explore and visualize the materials space to help identify underlying patterns. In this work, we develop a unified framework to hierarchically visualize the compositional and structural similarities between materials in an arbitrary material space with representations learned from different layers of graph convolutional neural networks. We demonstrate the potential for such a visualization approach by showing that patterns emerge automatically that reflect similarities at different scales in three representative classes of materials: perovskites, elemental boron, and general inorganic crystals, covering material spaces of different compositions, structures, and both. For perovskites, elemental similarities are learned that reflects multiple aspects of atom properties. For elemental boron, structural motifs emerge automatically showing characteristic boron local environments. For inorganic crystals, the similarity and stability of local coordination environments are shown combining different center and neighbor atoms. The method could help transition to a data-centered exploration of materials space in automated materials design.Comment: 22 + 7 pages, 6 + 5 figure
    corecore