71,086 research outputs found

    Ubiquitous systems and Petri nets

    Get PDF
    Several years before the popularization of the Internet, Mark Weiser proposed the concept of ubiquitous computing with the purpose of enhancing the use of computers by making many computers available throughout the physical environment, but making them effectively invisible to the user. Nowadays, such idea affects all areas of computing science, including both hardware and software. In this paper, a formal model for ubiquitous systems based on Petri nets is introduced and motivated with examples and applications. This simple model allows the definition of two-level ubiquitous systems, composed of a collection of processor nets providing services, and a collection of process nets requesting those services. The modeled systems abstract from middleware details, such as service discovery protocols, and security infrastructures, such as PKI’s or trust policies, but not from mobility or component compatibility

    Quality assessment technique for ubiquitous software and middleware

    Get PDF
    The new paradigm of computing or information systems is ubiquitous computing systems. The technology-oriented issues of ubiquitous computing systems have made researchers pay much attention to the feasibility study of the technologies rather than building quality assurance indices or guidelines. In this context, measuring quality is the key to developing high-quality ubiquitous computing products. For this reason, various quality models have been defined, adopted and enhanced over the years, for example, the need for one recognised standard quality model (ISO/IEC 9126) is the result of a consensus for a software quality model on three levels: characteristics, sub-characteristics, and metrics. However, it is very much unlikely that this scheme will be directly applicable to ubiquitous computing environments which are considerably different to conventional software, trailing a big concern which is being given to reformulate existing methods, and especially to elaborate new assessment techniques for ubiquitous computing environments. This paper selects appropriate quality characteristics for the ubiquitous computing environment, which can be used as the quality target for both ubiquitous computing product evaluation processes ad development processes. Further, each of the quality characteristics has been expanded with evaluation questions and metrics, in some cases with measures. In addition, this quality model has been applied to the industrial setting of the ubiquitous computing environment. These have revealed that while the approach was sound, there are some parts to be more developed in the future

    Supporting service discovery, querying and interaction in ubiquitous computing environments.

    Get PDF
    In this paper, we contend that ubiquitous computing environments will be highly heterogeneous, service rich domains. Moreover, future applications will consequently be required to interact with multiple, specialised service location and interaction protocols simultaneously. We argue that existing service discovery techniques do not provide sufficient support to address the challenges of building applications targeted to these emerging environments. This paper makes a number of contributions. Firstly, using a set of short ubiquitous computing scenarios we identify several key limitations of existing service discovery approaches that reduce their ability to support ubiquitous computing applications. Secondly, we present a detailed analysis of requirements for providing effective support in this domain. Thirdly, we provide the design of a simple extensible meta-service discovery architecture that uses database techniques to unify service discovery protocols and addresses several of our key requirements. Lastly, we examine the lessons learnt through the development of a prototype implementation of our architecture

    Ubiquitous Computing in a Home Environment, Controlling Consumer Electronics

    Get PDF
    Building interaction prototypes for ubiquitous computing is inherently difficult, since it involves a number of different devices and systems. Prototyping is an important step in developing and evaluating interaction concepts. The ideal prototyping methodology should offer high fidelity at a relatively low cost. This thesis describes the development of interaction concepts for controlling consumer electronics in a ubiquitous computing home environment, as well as the setup, based on immersive virtual reality, used to develop and evaluate the interaction concepts. Off-the-shelf input/output devices and a game engine are used for developing two concepts for device discovery and two concepts for device interaction. The interaction concepts are compared in a controlled experiment in order to evaluate the concepts as well as the virtual reality setup. Statistically significant differences and subjective preferences could be observed in the quantitative and qualitative data respectively. Overall, the results suggest that the interaction concepts could be acceptable to some users for some use cases and that the virtual reality setup offers the possibility to quickly build interaction concepts which can be evaluated and compared in a controlled experiment

    Self-managed cells and their federation

    Get PDF
    Future e-Health systems will consist of low-power, on-body wireless sensors attached to mobile users that interact with a ubiquitous computing environment. This kind of system needs to be able to configure itself with little or no user input; more importantly, it is required to adapt autonomously to changes such as user movement, device failure, the addition or loss of services, and proximity to other such systems. This extended abstract describes the basic architecture of a Self-Managed Cell (SMC) to address these requirements, and discusses various forms of federation between/among SMCs. This structure is motivated by a typical e-Health scenario

    Leveraging the Grid to Provide a Global Platform for Ubiquitous Computing Research

    Get PDF
    The requirement for distributed systems support for Ubicomp has led to the development of numerous platforms, each addressing a subset of the overall requirements of ubiquitous systems. In contrast, many other scientiÔ¹Åc disciplines have embraced the vision of a global distributed computing platform, i.e. the Grid. We believe that the Grid has the potential to evolve into an ideal platform for building ubiquitous computing applications. In this paper we explore in detail the areas of synergy between Grid computing and ubiquitous computing and highlight a series of research challenges in this space

    Supporting Device Discovery and Spontaneous Interaction with Spatial References

    Get PDF
    The RELATE interaction model is designed to support spontaneous interaction of mobile users with devices and services in their environment. The model is based on spatial references that capture the spatial relationship of a user’s device with other co-located devices. Spatial references are obtained by relative position sensing and integrated in the mobile user interface to spatially visualize the arrangement of discovered devices, and to provide direct access for interaction across devices. In this paper we discuss two prototype systems demonstrating the utility of the model in collaborative and mobile settings, and present a study on usability of spatial list and map representations for device selection

    Design and Implementation of S-MARKS: A Secure Middleware for Pervasive Computing Applications

    Get PDF
    As portable devices have become a part of our everyday life, more people are unknowingly participating in a pervasive computing environment. People engage with not a single device for a specific purpose but many devices interacting with each other in the course of ordinary activity. With such prevalence of pervasive technology, the interaction between portable devices needs to be continuous and imperceptible to device users. Pervasive computing requires a small, scalable and robust network which relies heavily on the middleware to resolve communication and security issues. In this paper, we present the design and implementation of S-MARKS which incorporates device validation, resource discovery and a privacy module
    • 

    corecore