1,491 research outputs found

    A Fog Computing Framework for Intrusion Detection of Energy-Based Attacks on UAV-Assisted Smart Farming

    Get PDF
    Precision agriculture and smart farming have received significant attention due to the advancements made in remote sensing technology to support agricultural efficiency. In large-scale agriculture, the role of unmanned aerial vehicles (UAVs) has increased in remote monitoring and collecting farm data at regular intervals. However, due to an open environment, UAVs can be hacked to malfunction and report false data. Due to limited battery life and flight times requiring frequent recharging, a compromised UAV wastes precious energy when performing unnecessary functions. Furthermore, it impacts other UAVs competing for charging times at the station, thus disrupting the entire data collection mechanism. In this paper, a fog computing-based smart farming framework is proposed that utilizes UAVs to gather data from IoT sensors deployed in farms and offloads it at fog sites deployed at the network edge. The framework adopts the concept of a charging token, where upon completing a trip, UAVs receive tokens from the fog node. These tokens can later be redeemed to charge the UAVs for their subsequent trips. An intrusion detection system is deployed at the fog nodes that utilize machine learning models to classify UAV behavior as malicious or benign. In the case of malicious classification, the fog node reduces the tokens, resulting in the UAV not being able to charge fully for the duration of the trip. Thus, such UAVs are automatically eliminated from the UAV pool. The results show a 99.7% accuracy in detecting intrusions. Moreover, due to token-based elimination, the system is able to conserve energy. The evaluation of CPU and memory usage benchmarks indicates that the system is capable of efficiently collecting smart-farm data, even in the presence of attacks

    USING A K-NEAREST NEIGHBORS MACHINE LEARNING APPROACH TO DETECT CYBERATTACKS ON THE NAVY SMART GRID

    Get PDF
    In 2019, the Naval Facilities Engineering Command (NAVFAC) deployed the Navy smart grid across multiple bases in the United States. The smart grid can improve the reliability, availability, and efficiency of electricity supply. While this brings about immense benefit, placing the grid on a network connected to the internet increases the threat of cyberattacks aimed at intelligence collection, disruption, and destruction. In this thesis, we propose an Intrusion Detection System (IDS) for the NAVFAC smart grid. This IDS comprises a feature extractor, classifier, anomaly detector, and response manager. We use the K-Nearest Neighbors machine learning algorithm to show that various attacks (web attacks, FTP/SSH attacks, DOS, DDOS and port scanning) can be grouped into broader attack classes of Active, Denial, and Probe for appropriate response management. We also show that in order to reduce the load on the security operations center (SOC), the accuracy of the classifier can be maximized by optimizing the value of k, which is the number of data points nearest to the sample under consideration that decides the class assigned.http://archive.org/details/usingaknearestne1094566054Outstanding ThesisCommander, Republic of Singapore NavyApproved for public release. distribution is unlimite

    Physical indicators of cyber attacks against a rescue robot

    Get PDF
    Responding to an emergency situation is a challenging and time critical procedure. The primary goal is to save lives and this is directly related to the speed and efficiency at which help is provided to the victims. Rescue robots are able to benefit an emergency response procedure by searching for survivors, providing access to inaccessible areas and establishing an on-site communication network. This paper investigates how a cyber attack on a rescue robot can adversely affect its operation and impair an emergency response operation. The focus is on identifying physical indicators of an ongoing cyber attack, which can help to design more efficient detection and defense mechanisms. A number of experiments have been conducted on an Arduino based robot, under different cyber attack scenarios. The results show that the cyber attack’s effects have physical features that can be used in order to improve the robot’s robustness against this type of threat

    Review of Detection Denial of Service Attacks using Machine Learning through Ensemble Learning

    Get PDF
    Today's network hacking is more resource-intensive because the goal is to prohibit the user from using the network's resources when the target is either offensive or for financial gain, especially in businesses and organizations. That relies on the Internet like Amazon Due to this, several techniques, such as artificial intelligence algorithms like machine learning (ML) and deep learning (DL), have been developed to identify intrusion and network infiltration and discriminate between legitimate and unauthorized users. Application of machine learning and ensemble learning algorithms to various datasets, consideration of homogeneous ensembles using a single algorithm type or heterogeneous ensembles using several algorithm types, and evaluation of the discovery outcomes in terms of accuracy or discovery error for detecting attacks. The survey literature provides an overview of the many approaches and approaches of one or more machine-learning algorithms used in various datasets to identify denial of service attacks. It has also been shown that employing the hybrid approach is the most common and produces better attack detection outcomes than using the sole approaches. Numerous machine learning techniques, including support vector machines (SVM), K-Nearest Neighbors (KNN), and ensemble learning like random forest (RF), bagging, and boosting, are illustrated in this work (DT). That is employed in several articles to identify different denial of service (DoS) assaults, including the trojan horse, teardrop, land, smurf, flooding, and worm. That attacks network traffic and resources to deny users access to the resources or to steal confidential information from the company without damaging the system and employs several algorithms to obtain high attack detection accuracy and low false alarm rates

    CamDec: Advancing axis P1435-LE video camera security using honeypot-based deception

    Get PDF
    The explosion of online video streaming in recent years resulted in advanced services both in terms of efficiency and convenience. However, Internet-connected video cameras are prone to exploitation, leading to information security issues and data privacy concerns. The proliferation of video-capable Internet of Things devices and cloud-managed surveillance systems further extend these security issues and concerns. In this paper, a novel approach is proposed for video camera deception via honeypots, offering increased security measures compared to what is available on conventional Internet-enabled video cameras

    Federated learning for distributed intrusion detection systems in public networks

    Get PDF
    Abstract. The rapid integration of technologies such as IoT devices, cloud, and edge computing has led to a progressively interconnected network of intelligent environments, services, and public infrastructures. This evolution highlights the critical need for sophisticated and self-governing Intrusion Detection Systems (IDS) to enhance trust and ensure the security and integrity of these interconnected environments. Furthermore, the advancement of AI-based Intrusion Detection Systems hinges on the effective utilization of high-quality data for model training. A considerable number of datasets created in controlled lab environments have recently been released, which has significantly facilitated researchers in developing and evaluating resilient Machine Learning models. However, a substantial portion of the architectures and datasets available are now considered outdated. As a result, the principal aim of this thesis is to contribute to the enhancement of knowledge concerning the creation of contemporary testbed architectures specifically designed for defense systems. The main objective of this study is to propose an innovative testbed infrastructure design, capitalizing on the broad connectivity panOULU public network, to facilitate the analysis and evaluation of AI-based security applications within a public network setting. The testbed incorporates a variety of distributed computing paradigms including edge, fog, and cloud computing. It simplifies the adoption of technologies like Software-Defined Networking, Network Function Virtualization, and Service Orchestration by leveraging the capabilities of the VMware vSphere platform. In the learning phase, a custom-developed application uses information from the attackers to automatically classify incoming data as either normal or malicious. This labeled data is then used for training machine learning models within a federated learning framework (FED-ML). The trained models are validated using previously unseen network data (test data). The entire procedure, from collecting network traffic to labeling data, and from training models within the federated architecture, operates autonomously, removing the necessity for human involvement. The development and implementation of FED-ML models in this thesis may contribute towards laying the groundwork for future-forward, AI-oriented cybersecurity measures. The dataset and testbed configuration showcased in this research could improve our understanding of the challenges associated with safeguarding public networks, especially those with heterogeneous environments comprising various technologies
    • …
    corecore